7 resultados para PROTEIN NETWORKS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Protein-protein interaction networks were investigated in terms of outward accessibility, which quantifies the effectiveness of each protein in accessing other proteins and is related to the internality of nodes. By comparing the accessibility between 144 ortholog proteins in yeast and the fruit fly, we found that the accessibility tends to be higher among proteins in the fly than in yeast. In addition, z-scores of the accessibility calculated for different species revealed that the protein networks of less evolved species tend to be more random than those of more evolved species. The accessibility was also used to identify the border of the yeast protein interaction network, which was found to be mainly composed of viable proteins.
Resumo:
Complex networks can be understood as graphs whose connectivity properties deviate from those of regular or near-regular graphs, which are understood as being ""simple"". While a great deal of the attention so far dedicated to complex networks has been duly driven by the ""complex"" nature of these structures, in this work we address the identification of their simplicity. The basic idea is to seek for subgraphs whose nodes exhibit similar measurements. This approach paves the way for complementing the characterization of networks, including results suggesting that the protein-protein interaction networks, and to a lesser extent also the Internet, may be getting simpler over time. Copyright (C) EPLA, 2009
Resumo:
The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.
Resumo:
Only a small fraction of spectra acquired in LC-MS/MS runs matches peptides from target proteins upon database searches. The remaining, operationally termed background, spectra originate from a variety of poorly controlled sources and affect the throughput and confidence of database searches. Here, we report an algorithm and its software implementation that rapidly removes background spectra, regardless of their precise origin. The method estimates the dissimilarity distance between screened MS/MS spectra and unannotated spectra from a partially redundant background library compiled from several control and blank runs. Filtering MS/MS queries enhanced the protein identification capacity when searches lacked spectrum to sequence matching specificity. In sequence-similarity searches it reduced by, on average, 30-fold the number of orphan hits, which were not explicitly related to background protein contaminants and required manual validation. Removing high quality background MS/MS spectra, while preserving in the data set the genuine spectra from target proteins, decreased the false positive rate of stringent database searches and improved the identification of low-abundance proteins.
Resumo:
Deviations from the average can provide valuable insights about the organization of natural systems. The present article extends this important principle to the systematic identification and analysis of singular motifs in complex networks. Six measurements quantifying different and complementary features of the connectivity around each node of a network were calculated, and multivariate statistical methods applied to identify singular nodes. The potential of the presented concepts and methodology was illustrated with respect to different types of complex real-world networks, namely the US air transportation network, the protein-protein interactions of the yeast Saccharomyces cerevisiae and the Roget thesaurus networks. The obtained singular motifs possessed unique functional roles in the networks. Three classic theoretical network models were also investigated, with the Barabasi-Albert model resulting in singular motifs corresponding to hubs, confirming the potential of the approach. Interestingly, the number of different types of singular node motifs as well as the number of their instances were found to be considerably higher in the real-world networks than in any of the benchmark networks. Copyright (C) EPLA, 2009
Resumo:
The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality.
Resumo:
Several gene regulatory network models containing concepts of directionality at the edges have been proposed. However, only a few reports have an interpretable definition of directionality. Here, differently from the standard causality concept defined by Pearl, we introduce the concept of contagion in order to infer directionality at the edges, i.e., asymmetries in gene expression dependences of regulatory networks. Moreover, we present a bootstrap algorithm in order to test the contagion concept. This technique was applied in simulated data and, also, in an actual large sample of biological data. Literature review has confirmed some genes identified by contagion as actually belonging to the TP53 pathway.