14 resultados para POLARIZED PHOTOLUMINESCENCE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Measurements of down-welling microwave radiation from raining clouds performed with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) radiometer at 10.7-21-36.5 GHz during the Global Precipitation Measurement Ground Validation ""Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the Global Precipitation Measurement"" (CHUVA) campaign held in Brazil in March 2010 represent a unique test bed for understanding three-dimensional (3D) effects in microwave radiative transfer processes. While the necessity of accounting for geometric effects is trivial given the slant observation geometry (ADMIRARI was pointing at a fixed 30 elevation angle), the polarization signal (i.e., the difference between the vertical and horizontal brightness temperatures) shows ubiquitousness of positive values both at 21.0 and 36.5 GHz in coincidence with high brightness temperatures. This signature is a genuine and unique microwave signature of radiation side leakage which cannot be explained in a 1D radiative transfer frame but necessitates the inclusion of three-dimensional scattering effects. We demonstrate these effects and interdependencies by analyzing two campaign case studies and by exploiting a sophisticated 3D radiative transfer suited for dichroic media like precipitating clouds.
Resumo:
Al(2)O(3):Eu(3+)(1%) samples were prepared by combustion, ceramic, and Pechini methods annealed from 400 to 1400 degrees C. XRD patterns indicate that samples heated up to 1000 degrees C present disordered character of activated alumina (gamma-Al(2)O(3)). However, alpha-Al(2)O(3) phase showed high crystallinity and thermostability at 1200-1400 degrees C. The sample characterizations were also carried out by means of infrared spectroscopy (IR), scanning electron microscopy (SEM) and specific surface areas analysis (BET method). Excitation spectra of Al(2)O(3):Eu(3+) samples present broaden bands attributed to defects of Al(2)O(3) matrices and to LMCT state of O -> Eu(3+), however, the narrow bands are assigned to (7)F(0) -> (5)D(J),(5)H(J) and (5)L(J) transitions of Eu(3+) ion. Emission spectra of samples calcined up to 1000 degrees C show broaden bands for (5)D(0) -> (7)F(J) transitions of Eu(3+) ion suggesting that the rare earth ion is in different symmetry sites showed by inhomogeneous line broadening of bands, confirming the predominance of the gamma-alumina phase. For all samples heated from 1200 to 1400 degrees C the spectra exhibit narrow (5)D(0) -> (7)F(J) transitions of Eu(3+) ion indicating the conversion of gamma to alpha-Al(2)O(3) phases, a high intensity narrow peak around 695 nm assigned to R lines of Cr(3+) ion is shown. Al(2)O(3):Eu(3+) heated up to 1100 degrees C presents an increase in the Omega(2) intensity parameter with the increase of temperatures enhancing the covalent character of metal-donor interaction. The disordered structural systems present the highest values of emission quantum efficiencies (eta). CIE coordinates of Al(2)O(3):Eu(3+) are also discussed. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The fact that the resistance of propagating electrons in solids depends on their spin orientation has led to a new field called spintronics. With the parallel advances in nanoscience, it is now possible to talk about nanospintronics. Many works have focused on the study of charge transport along nanosystems, such as carbon nanotubes, graphene nanoribbons, or metallic nanowires, and spin dependent transport properties at this scale may lead to new behaviors due to the manipulation of a small number of spins. Metal nanowires have been studied as electric contacts where atomic and molecular insertions can be constructed. Here we describe what might be considered the ultimate spin device, namely, a Au thin nanowire with one Co atom bridging its two sides. We show that this system has strong spin dependent transport properties and that its local symmetry can dramatically change them, leading to a significant spin polarized conductance.
Resumo:
Europium-doped lanthanum aluminate (LaAlO(3)) powder was prepared by using a combustion method. The crystallization, surface morphology, specific surface area and luminescence properties of the samples have been investigated. Photoluminescence studies of Eu doped LaAlO(3) showed orange-reddish emission due to Eu(3+) ions. LaAlO(3):Eu(3+) exhibits one thermally stimulated luminescence (TSL) peak around 400 degrees C. Room temperature electron spin resonance spectrum of irradiated phosphor appears to be a superposition of two centres. One of them (centre I) with principal g-value 2.017 is identified as an O(-) centre while centre II with an isotropic g-value 2.011 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre observed during thermal annealing around 300 degrees C grows with the annealing temperature. This centre (assigned to F(+) centre) originates from an F-centre (oxygen vacancy with two electrons) and the F-centre along with the associated F(+) centre appear to correlate with the observed TSL peak in LaAlO(3):Eu(3+) phosphor. The activation energy for this peak has been determined to be 1.54 eV from TSL data. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
In this communication, we report on the formation of calcium hexahydroxodizincate dehydrate, CaZn(2)(OH)(6)center dot 2H(2)O (CZO) powders under microwave-hydrothermal (MH) conditions. These powders were analyzed by X-ray diffraction (XRD), Field-emission gum scanning electron microscopy (FEG-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns confirmed that the pure CZO phase was obtained after MH processing performed at 130 degrees C for 2 h. FEG-SEM micrographs indicated that the morphological modifications as well as the growth of CZO microparticles are governed by Ostwald-ripening and coalescence mechanisms. UV-vis spectra showed that this material have an indirect optical band gap. The pure CZO powders exhibited an yellow PL emission when excited by 350 nm wavelength at room temperature. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
PbMoO(4) micro-octahedrons were prepared by the coprecipitation method at room temperature without the presence of surfactants and processed in a conventional hydrothermal at different temperatures (from 60 to 120 degrees C) for 10 min. These micro-octahedrons were structurally characterized by X-ray diffraction (XRD) and micro-Raman (MR) spectroscopy, and its morphology was investigated by field-emission gun scanning electron microscopy (FEG-SEM). The optical properties were analyzed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns and MR spectra confirmed that the PbMoO(4) micro-octahedrons are characterized by a scheelite-type tetragonal structure. FEG-SEM micrographs points, out that these structures present a polydisperse particle size distribution in consequence of a predominant growth mechanism via aggregation of particles. In addition, it was observed that the hydrothermal conditions favored a spontaneous formation of micro-octahedrons interconnected along a common crystallographic orientation (oriented-attachment), resulting in self-organized structures. An intense blue PL emission at room temperature was observed in these micro-octahedrons when they were excited with a 350 nm wavelength. The origin of the PL emissions as well as its intensity variations are explained by means of a model based on both distorted [MoO(4)] and [PbO(8)] clusters into the lattice.
Resumo:
Intense violet-blue photoluminescence (PL) emission at room temperature was verified in BaZrO3 (BZO) powders with structural order-disorder. Ab-initio calculations, ultraviolet-visible absorption spectroscopy and PL were performed. Theoretical results showed that the local disorder in the network-formed Zr clusters present an important role in the formation of hole-electron pair. The experimental data and theoretical results are in agreement, indicating that the PL emission in BZO powders can be related to the structural order-disorder degree in the lattice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Hierarchical assemblies of CaMoO4 (CM) nano-octahedrons were obtained by microwave-assisted hydrothemial synthesis at 120 degrees C for different times. These structures were structurally, morphologically and optically characterized by X-ray diffraction, micro-Raman spectroscopy, field-emission gun scanning electron microscopy, ultraviolet-visible absorption spectroscopy and photoluminescence measurements. First-principle calculations have been carried out to understand the structural and electronic order-disorder effects as a function of the particle/region size. Supercells of different dimensions were constructed to simulate the geometric distortions along both they and z planes of the scheelite structure. Based on these experimental results and with the help of detailed structural simulations, we were able to model the nature of the order-disorder in this important class of materials and discuss the consequent implications on its physical properties, in particular, the photoluminescence properties of CM nanocrystals.
Resumo:
The basic optical properties of PPV-based polymers have been extensively studied due to their potential technological applications. However, a detailed investigation of electronic processes following photoexcitation in the ultraviolet is still lacking. We report photoluminescence measurements on poly(1-methoxy-4-ethylhexyloxy-paraphenylenevinylene) - MEH-PPV in the 2.0-5.6 eV range, with excitation up to 5.6 eV. The photoluminescence spectra lineshape is independent of excitation energy. The photoluminescence efficiency is high for energies well below the absorption maximum due to near-resonant excitation of the longest conjugated segments which are responsible for the PL It decreases strongly for excitation energies in the range 2.1-2.5 eV (up to the absorption maximum) and slightly from 2.5 to 5.6 eV. The results indicate that states excited in the ultraviolet rapidly relax nonradiatively to the lowest state, from where the usual luminescence occurs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,)-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly [(9,9-dioctyl- 2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These Structures were determined by wide-angle X-ray scattering (WAXS) measurements, Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of similar to 4.5 angstrom and laterally spaced by about similar to 16 angstrom, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in them aggregated Structures, Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, Our data explain many features of the temperature dependence of the photoluminescence of these two polymers.
Resumo:
In the present work, the surface of the Eu-BTC = [Eu(EMA)(H(2)O)(2)], [Eu(TLA)(H(2)O)(4)] and [Eu(TMA)(H(2)O)(6)] complexes (EMA = 1,2,3-benzenetricarboxylate, TLA = 1,2,4-benzenetricarboxylate and TMA = 1,3,5-benzenetricarboxylate) was modified using 3-aminopropyltriethoxysilane (APTES) by a new microwave assisted method that proved to be simple and efficient. According to our observations, the most efficient luminescence is the material based on APTES incorporating [Eu(TMA)(H(2)O)(6)] complexes, denoted as Eu-TMA-Si, shows the highest emission efficiency. Therefore, it is proposed as a promising material for molecular conjugation in clinical diagnosis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Luminescent films containing terbium complex [Tb(acac)(3)(H(2)O)(3)] (acac = acetylacetonate) doped into a polycarbonate (PC) matrix were prepared and irradiated at low-dose gamma radiation with ratio of 5 and 10 kGy. The PC polymer was doped with 5% (w/w) of the Tb(3+) complex. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). Changes in thermal stability due to the addition of doping agent into the polycarbonate matrix. Based on the emission spectra of PC:5% Tb(acac)(3) film were observed the characteristic bands arising from the (5)D(4) -> (7)F(J) transitions of Tb(3+) ion (J = 0-6), indicating the ability to obtain the luminescent films. Doped samples irradiated at low dose of gamma irradiation showed a decrease in luminescence intensity with increasing of the dose. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
New lanthanide complexes with benzeneseleninic (ABSe) and 4-chloro-benzeneseleninic (ABSeCl) acids have been synthesized and characterized by elemental analysis, infrared and UV-visible spectroscopies. The emission spectra of the trivalent europium complexes presented the typical electronic (5)D(0) -> (7)F(j) transitions of the ion (J = 0-4). The ground-state geometries of the europium complexes have been calculated by using the Sparkle/AM1 model. From these results, the 4f-4f intensity parameters and energies of the ligand singlet and triplet excited states have been obtained. The lower emission quantum yield for the [Eu(ABSe)(3)(H(2)O)(2)](H(2)O)(2) compound, as compared to the [Eu(Al(3)SeCl)(3)(H(2)O)(2)] one, can be associated to the higher numbers of water molecules, in the first and second coordination spheres, that contribute to the luminescence quenching. The [Eu(Al(3)Se)(3)(H(2)O)(2)](H(2)O)(2) complex presents an intermediate state whose energy difference with respect to the first excited singlet state is resonant with three phonons from the water molecules, favouring a multiphonon relaxation process from the singlet state followed by a fast internal conversion process; this effect is less pronounced in the complex with the ABSeCl ligand. The luminescence decay curves of the gadolinium complexes indicate that the level responsible for the intramolecular energy transfer process has a triplet character for both compounds. The nephelauxetic effect in these compounds was investigated under the light of a recently proposed covalency scale based on the concept of overlap polarizability of the chemical bond. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Photochemical and photophysical properties of fac-[Re(CO)(3)(Clphen)(trans-L)](+) complexes, Clphen = 5-chloro-1,10-phenathroline and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy, were investigated to complement the understanding of intramolecular energy transfer process in tricarbonyl rhenium(I) complexes having an electron withdrawing group attached to polypyridyl ligands. These new compounds were synthesized, characterized and the photoisomerization quantum yields were accurately determined by (1)H NMR spectroscopy. The true quantum yields for fac-[Re(CO)(3)(Clphen) (trans-bpe)](+) were constant (Phi = 0.55) at all investigated irradiation wavelengths. However, for fac-[Re(CO)(3)(Clphen)(trans-stpy)](+), similar true quantum yields were observed only at higher energy irradiation (Phi(313 nm) = 0.53 and Phi(365 nm) = 0.57), but it decreased significantly at 404 nm (Phi = 0.41). These results indicated different deactivation pathways for the trans-stpy complex photoisomerization. Quantum yields decreased as the (3)IL(trans-L) and (3)MLCT(Re -> NN) excited states become closer and the behavior was discussed in terms of the excited state energy gaps. Additionally, luminescence properties of photoproducts, fac-[Re(CO)(3)(Clphen)(cis-L)](+), were also investigated in different environments to analyze the relative energy of the (3)MLCT(Re -> Clphen) excited state for each compound. (C) 2011 Elsevier B.V. All rights reserved.