4 resultados para POLAR ORGANIC MODE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The enantiomers of sulfoxide proton pump inhibitors - omeprazole, lansoprazole, rabeprazole and Ro 18-5364 - were enantiomerically separated by liquid chromatography at multimilligram scale on a poly saccharide-based chiral stationary phase using normal and polar organic conditions as mobile phase. The values of the recovery and production rate were significant for each enantiomer; better results were achieved using a solid-phase injection system. However, this system was applied just for the enantionteric separation of omeprazole to demonstrate the applicability of this injection mode at milligram scale. The chiroptical characterization of the compounds was performed using a polarimeter and a circular dichroism detector. The higher enantiomeric purity obtained for the isolated enantiomers suggests that the methods here described should be considered as a simple and rapid way to obtain enantiomeric pure standards for analytical purpose. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2046-2055, 2010
Resumo:
Ruthenium compounds have been actively studied as metallodrugs for cancer therapy. Representatives of ruthenium-based antitumor drugs are the classes of ruthenium(III)-chlorido-(N-ligand)complexes, including the drugs namely NAMI-A and KP1019 in clinical trials, and ruthenium(II)-arene organometallics, with some compounds currently undergoing advanced preclinical testing. An alternative approach for tumor-inhibiting metallodrugs is the coordination of metal ions to organic pharmaceuticals. The combination of antitumor-active ruthenium ion with biologically-active pro-ligands in single compounds can result in the enhancement of activity, for example through synergistic effects. In the present article, some developments in the ruthenium-based antitumor drugs field are briefly highlighted and recent studies on mixed diruthenium-organic drugs as metallopharmaceuticals in cancer therapy are described. Novel organic pharmaceuticals-containing diruthenium(II, III)complexes have shown promising antitumor activity for C6 rat glioma - a model for glioblastoma multiforme (GBA).
Resumo:
The effects of alkali treatment on the structural characteristics of cotton linters and sisal cellulose samples have been studied. Mercerization results in a decrease in the indices of crystallinity and the degrees of polymerization, and an increase in the alpha-cellulose contents of the samples. The relevance of the structural properties of cellulose to its dissolution is probed by studying the kinetics of cellulose decrystallization, prior to its solubilization in LiCl/N,N-dimethylacetamide (DMAc). Our data show that the decrystallization rate constants and activation parameters are only slightly dependent on the physico-chemical properties of the starting celluloses. This multi-step reaction is accompanied by a small enthalpy and large, negative, entropy of activation. These results are analyzed in terms of the interactions within the biopolymer chains during decrystallization, as well as those between the two ions of the electrolyte and both DMAc and cellulose.