16 resultados para PLGA
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The present study reports on the preparation and testing of a desoxycholate amphotericin B (D-AMB) sustained delivery system based on poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) polymeric blends (Nano-D-AMB) aimed at reducing the number of AMB administrations required to treat mycosis. BALB/c mice were infected with the yeast Paracoccidioides brasiliensis intravenously to mimic the chronic form of paracoccidioidomycosis. At 30 days post-infection, the animals were treated with Nano-D-AMB [6 mg/kg of encapsulated D-AMB, intraperitoneally (ip), interval of 72 h] or D-AMB (2 mg/kg, ip, interval of 24 h). Drug efficacy was investigated by the fungal burden recovery from tissues. Toxicity was assessed by renal and hepatic biochemical parameters, physical appearance of the animals and haematological investigation. The control groups used were non-infected and the infected mice mock treated with PBS. Nano-D-AMB presented results comparable to free D-AMB, with a marked antifungal efficacy. The Nano-D-AMB-treated group presented lower loss of body weight and absence of stress sign (piloerection and hypotrichosis) observed after D-AMB treatment. No renal [blood urea nitrogen (BUN), creatinine] or hepatic (pyruvic and oxalacetic glutamic transaminases) biochemical abnormalities were found. The micronucleus assay showed no significant differences in both the micronucleus frequency and percentage of polychromatic erythrocytes for Nano-D-AMB, indicating the absence of genotoxicity and cytotoxic effects. The D-AMB-coated PLGA-DMSA nanoparticle showed antifungal efficacy, fewer undesirable effects and a favourable extended dosing interval. Nano-D-AMB comprises an AMB formulation able to lessen the number of drug administrations. Further studies would elucidate whether Nano-D-AMB would be useful to treat systemic fungal infections such as paracoccidioidomycosis, candidiasis, aspergillosis and cryptococcosis.
Resumo:
Itraconazole (ITZ) is a drug used to treat various fungal infections and may cause side effects. The aim of this study was to develop and evaluate the in vitro activity of DMSA-PLGA nanoparticles loaded with ITZ against Paracoccidioides brasiliensis, as well as their cytotoxicity. Nanoparticles were prepared using the emulsification-evaporation technique and characterized by their encapsulation efficiency, morphology (TEM), size (Nanosight) and charge (zeta potential). Antifungal efficacy in P brasiliensis was determined by minimal inhibition concentration (MIC), and cytotoxicity using MU assay. ITZ was effectively incorporated in the PLGA-DMSA nanoparticles with a loading efficiency of 72.8 +/- 3.50%. The shape was round with a solid polymeric structure, and a size distribution of 174 +/- 86 nm (Average +/- SD). The particles were negatively charged. ITZ-NANO presented antifungal inhibition (MIC = 6.25 ug/mL) against P brasiliensis and showed lower in vitro cytotoxicity than free drug (ITZ).
Resumo:
This study presents the possibilities offered by microfluidic structures for the production of polymeric microspheres, using a process based upon the production of an emulsion. LTCC (Low Temperature Co-fired Ceramics) micromixers have been used for the preparation of polymeric microspheres. The effect of the geometry of the micromixers has been studied, with a specific focus on the size of the microspheres. as well as the control release properties of a model protein loaded within these microspheres. (C) 2008 Published by Elsevier B.V.
Resumo:
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py = pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600 nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2 h of incubation. The complex with concentrations lower than 1 x 10(-4) M did not show toxicity in B16-F 10 murine cells. The complex in solution is toxic at higher concentrations (> 1 x 10(-3) M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by radiation with light only. (c) 2007 Elsevier Inc. All rights reserved.
Seeding Osteoblastic Cells into a Macroporous Biodegradable CaP/PLGA Scaffold by a Centrifugal Force
Resumo:
This study aims to construct a hybrid biomaterial by seeding osteoblastic cells into a CaP/PLGA scaffold by a centrifugal force. Constructs are evaluated with respect to potential application in bone tissue engineering. Cells adher, spread, and form a layer of tissue lining the scaffold and are capable of migrating, proliferating, and producing mineralized matrix. We have demonstrated that the centrifugal force is highly efficient for constructing a hybrid biomaterial, which acts similarly to bone explants in a cell culture environment. In this way, these constructs could mimic an autogenous bone graft in clinical circumstances. Such a strategy may be useful for bone tissue engineering.
Resumo:
The aims of this work were preparation and physical-chemical characterization of a microparticulate release system for delivery of enoxaparin sodium (ENX), a low-molecular-weight heparin, as a potential vehicle for optimization of deep venous thrombosis therapy. Microparticles (MPs) containing ENX were prepared from polylactide-co-glycolic acid [PLGA; (50: 50)] by a double emulsification/solvent evaporation method. The preparation parameters, such as proportion ENX/PLGA, surfactant concentration, type, time, and speed of stirring, were evaluated. The encapsulation efficiency and yield process were determined and optimized, and the in vitro release profile was analysed at 35 days. The MPs showed a spherical shape with smooth and regular surfaces. The size distribution showed a unimodal profile with an average size of 2.0 +/- 0.9 mu m. The low encapsulation efficiency (< 30%), characteristic of hydrophilic macromolecules was improved, reaching 50.2% with a procedure yield of 71.3%. The in vitro profile of ENX release from the MPs was evaluated and showed pseudo-zero-order kinetics. This indicated that diffusion was the main drug release mechanism. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:1783-1792, 2011
Resumo:
Histoplasmosis is a pulmonary disease characterised by chronic granulomatous and suppurative inflammatory reactions caused by Histoplasma capsulatum. Regarding new therapies to control fungal infections, the aim of this study was to investigate whether pulmonary administration of leukotriene B(4) (LTB(4))-loaded microspheres (MS) could confer protection to 5-lipoxygenase knockout (5-LO(-/-)) mice infected by H. capsulatum. In this study, MS containing LTB4 were administered intranasally to mice infected by H. capsulatum. On Day 14 after the infection, fungal recovery from the lungs and histology were evaluated and inflammatory cytokines were measured. Pulmonary administration of LTB(4)-loaded MS was able to reduce fungal recovery from infected lungs. Production of important inflammatory cytokines related to host defence was augmented following MS administration to the lungs. Lung histology also showed that infected mice presented a clear reduction in the fungal burden following the pulmonary release of LTB4 from MS. Our study provides evidence that the proposed biodegradable microparticulate system, which can release LTB4 to the lungs, can be employed as therapy, enhancing the antimicrobial activity of host cells during histoplasmosis. (C) 2009 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Of the hundreds of new tuberculosis ( TB) vaccine candidates some have therapeutic value in addition to their prophylactic properties. This is the case for the DNA vaccine encoding heat-shock protein 65 (DNAhsp65) from Mycobacterium leprae. However, there are concerns about the use of DNA vaccines in certain populations such as newborns and pregnant women. Thus, the optimization of vaccination strategies that circumvent this limitation is a priority. This study evaluated the efficacy of a single dose subunit vaccine based on recombinant Hsp65 protein against infection with M. tuberculosis H37Rv. The Hsp65 protein in this study was either associated or not with immunostimulants, and was encapsulated in biodegradable PLGA microspheres. Our results demonstrate that the protein was entrapped in microspheres of adequate diameter to be engulfed by phagocytes. Mice vaccinated with a single dose of Hsp65-microspheres or Hsp65 + CpG-microspheres developed both humoral and cellular-specific immune responses. However, they did not protect mice against challenge with M. tuberculosis. By contrast, Hsp65+KLK-microspheres induced specific immune responses that reduced bacilli loads and minimized lung parenchyma damage. These data suggest that a subunit vaccine based on recombinant protein Hsp65 is feasible.
Resumo:
Purpose: To describe the presence of iris neovascularization in a rabbit-model of retinal neovascularization induced by the intravitreal injection of latex-derived angiogenic fraction microspheres (LAF). Materials and Methods: Eight New Zealand rabbits received one intravitreal injection of PLGA (L-lactide-coglycolide) microspheres with 50 ug of LAF in the right eye (Group A). Microspheres without the LAF (0.1 ml) were injected in controls (Group B; n = 8). Follow-up with clinical evaluation and iris fluorescein angiography was performed after 4 weeks when eyes were processed for light microscopy. Results: All eyes from Group A showed significant vascular dilation, conjunctival hyperemia and neovascularization on the iris surface, after LAF injection. No vascular changes were observed in Group B. Conclusions: The intravitreal injection of microspheres containing the LAF can induce rubeosis iridis in rabbits and could be used as a simple experimental model for iris neovascularization.
Resumo:
In the last decades, the incidence of histoplasmosis, a pulmonary fungal disease caused by Histoplasma capsulatum, has increased worldwide. In this context, vaccines for the prevention of this infection or therapies are necessary. Cell-free antigens (CFAgs) from H. capsulatum when administered for murine immunization purposes are able to confer protection and control of the infection, since they activate cellular immunity. However the most of vaccination procedures need several anti, gens administrations and immunoadjuvants, which are not approved for use in humans. The aim of this study was to develop and characterize a vaccination approach using biodegradable PLGA microspheres (MS) that could allow the controlled and/or sustained release of the encapsulated antigens from H. capsulatum. CFAgs-loaded MS presented a size less than 10 mu m, were marked engulfed by bone marrow-derived macrophages (BMDM phi) and induced the nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production by these cells. Our data show that CFAgs-loaded MS induce cell activation, suggesting an immunostimulant effect to be further investigated during immunization procedures. CFAgs-loaded MS present potential to be used as vaccine in order to confer protection against H. capsulatum infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To create a retinal neovascularization experimental model using intravitreal injection of microspheres loaded with latex-derived angiogenic fraction. Methods: Thirty-two albino New Zealand rabbits, divided in 4 groups of 8 animals, were enrolled in this study. Rabbits in groups I, II, and III received one intravitreal injection of PLGA (L-lactide-co-glycolide) microspheres with 10, 30, and 50 mu g of latex-derived angiogenic fraction into their right eyes, respectively, and group IV received 0.1 ml of microspheres without the angiogenic fraction. Weekly follow-up with ophthalmoscopy and fluorescein angiography was performed; the rabbits were sacrificed in the 4th week and their eyes processed for light microscopy. Results: All eyes from group I demonstrated increased retinal vascular tortuosity, observed from 14 days after injection and maintained for 28 days, otherwise without new vessels detection. All group II eyes showed vascular changes similar to group I. Fifty percent of the eyes from group II rabbits developed retinal neovascularization 21 days after injection. All eyes from group III demonstrated significant vascular tortuosity and retinal new vessels 2 weeks after injection, progressing to fibrovascular proliferation and tractional retinal detachment. No vascular changes or retinal new vessels were observed in group IV eyes. Light microscopy confirmed the existence of new vessels previously seen on fluorescein angiography, in retinal sections adjacent to the optic disc, not observed in sections at the same area in the control group. Conclusion: Thirty- and 50-mu g microspheres containing latex-derived angiogenic fraction injected into the vitreous cavity induced retinal neovascularization in rabbits.
Resumo:
Background: Galectin-3 has been implicated in tumor progression of some malignancies as thyroid, prostate, and salivary gland tumors. Recently, it has been suggested that this protein may be an important mediator of the beta-catenin/Wnt pathway. Moreover, nuclear galectin-3 expression has been implicated in cell proliferation, promoting cyclin D1 activation. Thus, the present study aimed to correlate galectin-3 expression with beta-catenin and cyclin D1 expressions in adenoid cystic carcinoma (ACC) and in polymorphous low-grade adenocarcinoma (PLGA). Methods: Fifteen formalin-fixed paraffin-embedded cases of each tumor were retrieved from the files of the Surgical Oral Pathology Service at the University of Sao Paulo and the proteins were analyzed by immunohistochemistry. Results: Adenoid cystic carcinoma showed galectin-3 immunostaining mainly in the nuclei, while PLGA revealed a positive mostly cytoplasmic reaction to galectin-3 in the largest part of tumor cells. Both tumors showed intense cytoplasmic/nuclear staining for beta-catenin in majority of cases. Cyclin D1 immunoreactivity was not detected in 14/15 PLGA and showed specific nuclear staining in 10/15 cases of ACC in more than 5% of the neoplastic cells. Cyclin D1 expression was correlated with cytoplasmic and nuclear galectin-3 expression in ACC (P < 0.05). Conclusions: These results suggest that in ACC galectin-3 may play a role in cellular proliferation through cyclin D1 activation. In addition, nuclear expression of galectin-3 in ACC may be related to a more aggressive behavior of this lesion. Although beta-catenin seems to play a role in carcinogenesis in both lesions, it seems that it does not bind to galectin-3 for cyclin D1 stimulation.
Resumo:
Background and purpose: The present study reports on the preparation and testing of a sustained delivery system for the immunomodulatory peptide P10 aimed at reducing the in vivo degradation of the peptide and the amount required to elicit a protective immune response against paracoccidioidomycosis. Experimental approach: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis to mimic the chronic form of paracoccidioidomycosis. The animals were treated daily with sulfamethoxazole/trimethoprim alone or combined with peptide P10, either emulsified in Freund`s adjuvant or entrapped in poly(lactic acid-glycolic acid) (PLGA) nanoparticles at different concentrations (1 mu g, 5 mu g, 10 mu g, 20 mu g or 40 mu g center dot 50 mu L-1). Therapeutic efficacy was assessed as fungal burden in tissues and the immune response by quantitative determination of cytokines. Key results: Animals given combined chemotherapy and P10 nanotherapy presented a marked reduction of fungal load in the lungs, compared with the non-treated animals. After 30 days of treatment, P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) was more effective than `free` P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1), as an adjuvant to chemotherapy. After treatment for 90 days, the higher doses of P10 entrapped within PLGA (5 or 10 mu g center dot 50 mu L-1) were most effective. Treatment with P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1) or P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) were accompanied by high levels of interferon-gamma in lung. Conclusions and implications: Combination of sulfamethoxazole/trimethoprim with the P10 peptide entrapped within PLGA demonstrated increased therapeutic efficacy against paracoccidioidomycosis. P10 incorporation into PLGA nanoparticles dramatically reduced the peptide amount necessary to elicit a protective effect.
Resumo:
Chitosan (alpha alpha-(1-4)-amino-2-deoxy-beta beta-D-glucan) is a deacetylated form of chitin, a polysaccharide from crustacean shells. Its unique characteristics, such as positive charge, biodegradability, biocompatibility, nontoxicity, and rigid structure, make this macromolecule ideal for an oral vaccine delivery system. We prepared reverse-phase evaporation vesicles (REVs) sandwiched by chitosan (Chi) and polyvinylic alcohol (PVA). However, in this method, there are still some problems to be circumvented related to protein stabilization. During the inverted micelle phase of protein nanoencapsulation, hydrophobic interfaces are expanded, leading to interfacial adsorption, followed by protein unfolding and aggregation. Here, spectroscopic and immunological techniques were used to ascertain the effects of the Hoffmeister series ions on diphtheria toxoid (Dtxd) stability during the inverted micelle phase. A correlation was established between the salts used in aqueous solutions and the changes in Dtxd solubility and conformation. Dtxd alpha alpha-helical content was quite stable, which led us to conclude that encapsulation occurred without protein aggregation or without exposition of hydrophobic residues. Dtxd aggregation was 98% avoided by the kosmotropic, PO
Resumo:
Thermal analysis has been widely used for obtaining information about drug-polymer interactions and for pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles Of Poly (D,L-lactide-co-glycolide) (PLGA) containing triamcinolone (TR) in various drug:polymer ratios were produced by spray drying. The main purpose of this study was to study the effect of the spray-drying process not only on the drug-polymer interactions but also on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG), X-ray analysis (XRD), and infrared spectroscopy (IR). The evaluation of drug-polymer interactions and the pre-formulation studies were assessed using the DSC, TG and DTG, and IR. The quantitative analysis of drugs entrapped in PLGA microparticles was performed by the HPLC method. The results showed high levels of drug-loading efficiency for all used drug: polymer ratio, and the polymorph used for preparing the microparticles was the form B. The DSC and TG/DTG profiles for drug-loaded microparticles were very similar to those for the physical mixtures of the components. Therefore, a correlation between drug content and the structural and thermal properties of drug-loaded PLGA microparticles was established. These data indicate that the spray-drying technique does not affect the physico-chemical stability of the microparticle components. These results are in agreement with the IR analysis demonstrating that no significant chemical interaction occurs between TR and PLGA in both physical mixtures and microparticles. The results of the X-ray analysis are in agreement with the thermal analysis data showing that the amorphous form of TR prevails over a small fraction of crystalline phase of the drug also present in the TR-loaded microparticles. From the pre-formulation studies, we have found that the spray-drying methodology is an efficient process for obtaining TR-loaded PLGA microparticles. (C) 2008 Elsevier B.V. All rights reserved.