4 resultados para PKC[bêta]1
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
It is well-known that glucagon increases fractional excretion of urea in rats after a protein intravenous infusion. This effect was investigated by using: (a) in vitro microperfusion technique to measure [(14)C]-urea permeability (Pu x 10(-5) cm/s) in inner medullary collecting ducts (IMCD) from normal rats in the presence of 10(-7) M of glucagon and in the absence of vasopressin and (b) immunoblot techniques to determine urea transporter expression in tubule suspension incubated with the same glucagon concentration. Seven groups of IMCDs (n = 47) were studied. Our results revealed that: (a) glucagon decreased urea reabsorption dose-dependently; (b) the glucagon antagonist des-His(1)-[Glu(9)], blocked the glucagon action but not vasopressin action; (c) the phorbol myristate acetate, decreased urea reabsorption but (d) staurosporin, restored its effect; e) staurosporin decreased glucagon action, and finally, (f) glucagon decreased UT-A1 expression. We can conclude that glucagon reduces UT-A1 expression via a glucagon receptor by stimulating PKC.
Resumo:
Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.
Resumo:
There is evidence that pro-opiomelanocortin (POMC)-derived peptides other than adrenocorticotropic hormone (ACTH) have a role in adrenal cell proliferation. We compared the activity of synthetic rat N-terminal POMC fragment 1-28 with disulfide bridges (N-POMC(w)) and without disulfide bridges (N-POMC(w/o)), with the activity of fibroblast growth factor (FGF2), a widely studied adrenal growth factor, and ACTH, in well-characterized pure cultures of both isolated adrenal Glomerulosa (G) and Fasciculata/Reticularis (F/R) cells. Three days of FGF2-treatment had a proliferative effect similar to serum, and synthetic peptide N-POMC(w) induced proliferation more efficiently than N-POMC(w/o). Moreover, both induced proliferation via the ERK1/2 pathway. In contrast, sustained ACTH treatment decreased proliferation and viability through apoptosis induction, but not necrosis, and independently of PKA and PKC pathways. Further elucidation of 1-28 POMC signal transduction is of interest, and primary cultures of adrenal cells were found to be useful for examining the trophic activity of this peptide.
Resumo:
Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.