11 resultados para PHASEOLUS-VULGARIS-LEUKOAGGLUTININ
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Seeds sprouts have been used as a good source of basic nutrients and nutraceutical compounds. The high nutritional value of seeds derives from the deposition of compounds during development. However some of these molecules are used in metabolic processes like germination, which leads to a considerable variation in their concentrations once these events are completed. In this work, we investigate the levels of inositols (myo-inositol, D-pinitol and ononitol), soluble carbohydrates and proteins in cotyledons of Phaseolus vulgaris and Vigna unguiculata sprouts. Sprouting increased myo-inositol and glucose content and reduction of raffinose and ononitol was observed. The protein levels increased in P. vulgaris and decreased in V. unguiculata sprouting. The level of sucrose was maintained in both sprouts. D-Pinitol was detected only in quiescent seeds. Our results suggested that bean sprout is an important source of proteins, sucrose, glucose and myo-inositol. Additionally, bean sprouts have low levels of raffinose, an antinutritional compound.
Resumo:
The hypothalamus plays especially important roles in various endocrine, autonomic, and behavioral responses that guarantee the survival of both the individual and the species. In the rat, a distinct hypothalamic defensive circuit has been defined as critical for integrating predatory threats, raising an important question as to whether this concept could be applied to other prey species. To start addressing this matter, in the present study, we investigated, in another prey species (the mouse), the pattern of hypothalamic Fos immunoreactivity in response to exposure to a predator (a rat, using the Rat Exposure Test). During rat exposure, mice remained concealed in the home chamber for a longer period of time and increased freezing and risk assessment activity. We were able to show that the mouse and the rat present a similar pattern of hypothalamic activation in response to a predator. Of particular note, similar to what has been described for the rat, we observed in the mouse that predator exposure induces a striking activation in the elements of the medial hypothalamic defensive system, namely, the anterior hypothalamic nucleus, the dorsomedial part of the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus. Moreover, as described for the rat, predator-exposed mice also presented increased Fos levels in the autonomic and parvicellular parts of the paraventricular hypothalamic nucleus, lateral preoptic area and subfornical region of the lateral hypothalamic area. In conclusion, the present data give further support to the concept that a specific hypothalamic defensive circuit should be preserved across different prey species. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Neonatal anoxia is a worldwide clinical problem that has serious and lasting consequences. The diversity of models does not allow complete reproducibility, so a standardized model is needed. In this study, we developed a rat model of neonatal anoxia that utilizes a semi-hermetic system suitable for oxygen deprivation. The validity of this model was confirmed using pulse oximetry, arterial gasometry, observation of skin color and behavior and analysis of Fos immunoreactivity in brain regions that function in respiratory control. For these experiments, 87 male albino neonate rats (Rattus norvegicus, lineage Wistar) aged approximate 30 postnatal hours were divided into anoxia and control groups. The pups were kept in an euthanasia polycarbonate chamber at 36 +/- 1 degrees C, with continuous 100% nitrogen gas flow at 3 L/min and 101.7 kPa for 25 min. The peripheral arterial oxygen saturation of the anoxia group decreased 75% from its initial value. Decreased pH and partial pressure of oxygen and increased partial pressure of carbon dioxide were observed in this group, indicating metabolic acidosis, hypoxia and hypercapnia. respectively. Analysis of neuronal activation showed Fos immunoreactivity in the solitary tract nucleus, the lateral reticular nucleus and the area postrema, confirming that those conditions activated areas related to respiratory control in the nervous system. Therefore, the proposed model of neonatal anoxia allows standardization and precise control of the anoxic condition, which should be of great value in indentifying both the mechanisms underlying neonatal anoxia and novel therapeutic strategies to combat or prevent this widespread public health problem. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Effective defense against natural threats in the environment is essential for the survival of individual animals. Thus, instinctive behavioral responses accompanied by fear have evolved to protect individuals from predators and from opponents of the same species (dominant conspecifics). While it has been suggested that all perceived environmental threats trigger the same set of innately determined defensive responses, we tested the alternate hypothesis that different stimuli may evoke differentiable behaviors supported by distinct neural circuitry. The results of behavioral, neuronal immediate early gene activation, lesion, and neuroanatomical experiments indicate that the hypothalamus is necessary for full expression of defensive behavioral responses in a subordinate conspecific, that lesions of the dorsal premammillary nucleus drastically reduce behavioral measures of fear in these animals, and that essentially separate hypothalamic circuitry supports defensive responses to a predator or a dominant conspecific. It is now clear that differentiable neural circuitry underlies defensive responses to fear conditioning associated with painful stimuli, predators, and dominant conspecifics and that the hypothalamus is an essential component of the circuitry for the latter two stimuli.
Resumo:
In this study we provide a comprehensive analysis of the hypothalamic activation pattern during exposure to a live predator or an environment previously associated with a predator. Our results support the view that hypothalamic processing of the actual and the contextual predatory threats share the same circuit, in which the dorsal premammillary nucleus (PMd) plays a pivotal role in amplifying this processing. To further understand the role of the PMd in the circuit organizing antipredatory defensive behaviors, we studied rats with cytotoxic PMd lesions during cat exposure and examined the pattern of behavioral responses as well as how PMd lesions affect the neuronal activation of the systems engaged in predator detection, in contextual memory formation and in defensive behavioral responses. Next, we investigated how pharmacological blockade of the PMd interferes with the conditioned behavioral responses to a context previously associated with a predator, and how this blockade affects the activation pattern of periaqueductal gray (PAG) sites likely to organize the conditioned behavioral responses to the predatory context. Behavioral observations indicate that the PMd interferes with both unconditioned and conditioned antipredatory defensive behavior. Moreover, we have shown that the PMd influences the activation of its major projecting targets, i.e. the ventral part of the anteromedial thalamic nucleus which is likely to influence mnemonic processing, and PAG sites involved in the expression of antipredatory unconditioned and conditioned behavioral responses. Of particular relevance, this work provides evidence to elucidate the basic organization of the neural circuits integrating unconditioned and contextual conditioned responses to predatory threats.
Resumo:
The prefrontal cortex (PFC) receives strong inputs from monoaminergic cell groups in the brainstem and also sends projections to these nuclei. Recent evidence suggests that the PFC exerts a powerful top-down control over the dorsal raphe nucleus (DR) and that it may be involved in the actions of pharmaceutical drugs and drugs of abuse. In the light of these findings, the precise origin of prefrontal inputs to DR was presently investigated by using the cholera toxin subunit b (CTb) as retrograde tracer. All the injections placed in DR produced retrograde labeling in the medial, orbital, and lateral divisions of the PFC as well as in the medial part of the frontal polar cortex. The labeling was primarily located in layer V. Remarkably, labeling in the medial PFC was denser in its ventral part (infralimbic and ventral prelimbic cortices) than in its dorsal part (dorsal prelimbic, anterior cingulate and medial precentral cortices). After injections in the rostral or caudal DR, the largest number of labeled neurons was observed in the medial PFC, whereas after injections in the mid-rostrocaudal DR, the labeled neurons were more homogeneously distributed in the three main PFC divisions. A cluster of labeled neurons also was observed around the apex of the rostral pole of the accumbens, especially after rostral and mid-rostrocaudal DR injections. Overall, these results confirm the existence of robust preftontal projections to DR, mainly derived from the ventral part of the medial PFC, and underscore a substantial contribution of the frontal polar cortex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The ventral tegmental area (VTA) is a nodal link in reward circuitry. Based on its striatal output, it has been subdivided in a caudomedial part which targets the ventromedial striatum, and a lateral part which targets the ventrolateral striatum [Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78]. Whether these two VTA parts are interconnected and to what extent the VTA innervates the substantia nigra compacta (SNc) and retrorubral nucleus (RR) are critical issues for understanding information processing in the basal ganglia. Here, VTA projections to the VTA-nigral complex were examined in rats, using Phaseolus vulgaris leucoagglutinin (PHA-L) as anterograde tracer. The results show that the dorsolateral VTA projects to itself, as well as to the dorsal tier of the SNc and RR, largely avoiding the caudomedial VTA. The ventrolateral VTA innervates mainly the interfascicular nucleus. The components of the caudomedial VTA (the interfascicular, paranigral and caudal linear nuclei) are connected with each other. In addition, the caudomedial VTA (especially the paranigral and caudal linear nuclei) innervates the lateral VTA, and, to a lesser degree, the SNc and RR. The caudal pole of the VTA sends robust, bilateral projections to virtually all the VTA-nigral complex, which terminate in the dorsal and ventral tiers. Modest inputs from the medial supramammillary nucleus to ventromedial parts of the VTA-nigral complex were also identified. In double-immunostained sections, PHA-L-labeled varicosities were sometimes found apposed to tyrosine hydroxylase-positive neurons in the ventral mesencephalon. Overall, the results underscore that VTA projections to the VTA-nigral complex are substantial and topically organized. In general, these projections, like the spiralated striato-nigro-striatal loops, display a medial-to-lateral organization. This anatomical arrangement conceivably permits the ventromedial striatum to influence the activity of the lateral striatum. The caudal pole of the VTA appears to be a critical site for a global recruitment of the mesotelencephalic system. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Combining the results of behavioral, neuronal immediate early gene activation, lesion and neuroanatomical experiments, we have presently investigated the role of the superior colliculus (SC) in predatory hunting. First, we have shown that insect hunting is associated with a characteristic large increase in Fos expression in the lateral part of the intermediate gray layer of the SC (Wig). Next, we have shown that animals with bilateral NMDA lesions of the lateral parts of the SC presented a significant delay in starting to chase the prey and longer periods engaged in other activities than predatory hunting. They also showed a clear deficit to orient themselves toward the moving prey and lost the stereotyped sequence of actions seen for capturing, holding and killing the prey. Our Phaseolus vulgaris-leucoagglutinin analysis revealed that the lateral SCig, besides providing the well-documented descending crossed pathway to premotor sites in brainstem and spinal cord, projects to a number of midbrain and diencephalic sites likely to influence key functions in the context of the predatory behavior, such as general levels of arousal, motivational level to hunt or forage, behavioral planning, appropriate selection of the basal ganglia motor plan to hunt, and motor output of the primary motor cortex. In contrast to the lateral SC lesions, medial SC lesions produced a small deficit in predatory hunting, and compared to what we have seen for the lateral SCig, the medial SCig has a very limited set of projections to thalamic sites related to the control of motor planning or motor output, and provides conspicuous inputs to brainstem sites involved in organizing a wide range of anti-predatory defensive responses. Overall, the present results served to clarify how the different functional domains in the SC may mediate the decision to pursue and hunt a prey or escape from a predator. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Larvae of Zabrotes subfasciatus secrete alpha-amylases that are insensitive to the alpha-amylase inhibitor found in seeds of Phaseolus vulgaris. By analyzing amylase activities during larval development on P. vulgaris, we detected activity of the constitutive amylase and the two inducible amylase isoforms at all stages. When larvae were transferred from the non alpha-amylase inhibitor containing seeds of Vigna unguiculata to P. vulgaris, the inducible alpha-amylases were expressed at the same level as in control larvae fed on P. vulgaris. Interestingly, when larvae were transferred from seeds of P. vulgaris to those of V. unguiculata, inducible alpha-amylases continued to be expressed at a level similar to that found in control larvae fed P. vulgaris continuously. When 10-day-old larvae were removed from seeds of V. unguiculata and transferred into capsules containing flour of P. vulgaris cotyledons, and thus maintained until completing 17 days ( age when the larvae stopped feeding), we could detect higher activity of the inducible alpha-amylases. However, when larvae of the same age were transferred from P. vulgaris into capsules containing flour of V. unguiculata, the inducible alpha-amylases remained up-regulated. These results suggest that the larvae of Z. subfasciatus have the ability to induce insensitive amylases early in their development. A short period of feeding on P. vulgaris cotyledon flour was sufficient to irreversibly induce the inducible alpha-amylase isoforms. Incubations of brush border membrane vesicles with the alpha-amylase inhibitor 1 from P. vulgaris suggest that the inhibitor is recognized by putative receptors found in the midgut microvillar membranes. (C) 2010 Wiley Periodicals, Inc.
Resumo:
In this study, Chlorella vulgaris (CV) was examined for its chelating effects on the ability of bone marrow stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice, using the long-term bone marrow culture (LTBMC). In addition, the levels of interleukin (IL)-6, an important hematopoietic stimulator, as well as the numbers of adherent and non-adherent cells were also investigated. Mice were gavage treated daily with a single 50 mg/kg dose of CV for 10 days, concomitant to continuous offering of 1300 ppm lead acetate in drinking water. We found that CV up-modulates the reduced ability of stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice and restores both the reduced number of non-adherent cells and the ability of stromal cells from these mice to produce IL-6. Monitoring of lead poisoning demonstrated that CV treatment significantly reduced lead levels in blood and tissues, completely restored the normal hepatic ALA levels, decreased the abnormally high plasma ALA and partly recovered the liver capacity to produce porphyrins. These findings provide evidence for a beneficial use of CV for combination or alternative chelating therapy to protect the host from the damage induced by lead poisoning. (C) 2008 Elsevier Ltd. All rights reserved.