3 resultados para PEROVSKITE-LIKE COMPOUND

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural, magnetic and hyperfine interaction measurements have been carried out on the novel compound La(3.5)Ru(4)O(13) prepared under two different atmospheres (air and oxygen flow). This compound is formed in the orthorhombic structure (space group Pmmm, # 47). The coexistence of the triple-layered perovskite-type planes (quasi-2D structure) and the rutile-like slabs (1D structure) leads to interesting magnetic and electronic properties in this compound. The magnetic susceptibility of this system shows a peak at T similar to 47 K associated with antiferromagnetic interactions. The Curie-Weiss behaviour of the susceptibility provides an effective magnetic moment consistent with Ru ions in low-spin state. Perturbed angular correlation measurements carried out with (111)Cd probe in the temperature range 10-60 K reveal only quadrupole interactions and indicate the occurrence of structural distortions for T<40K. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the synthesis of cubic, FDU-1 type, ordered mesoporous silica (OMS) was developed from two types of silicon source, tetraethyl orthosilicate (TEOS) and a less expensive compound, sodium silicate (Na(2)Si(3)O(7)), in the presence of a new triblock copolymer template Vorasurf 504 (EO(38)BO(46)EO(38)). For both silicon precursors the synthesis temperature was evaluated. For TEOS the effect of polymer dissolution in methanol and the acid solution (HCl and HBr) on the material structure was analyzed. For Na(2)Si(3)O(7) the influence of the polymer mass and the hydrothermal treatment time were the explored experimental parameters. The samples were examined by Small Angle X-ray Scattering (SAXS) and Nitrogen Sorption. For both precursors the decrease on the synthesis temperature from ambient, -25 degrees C, to -15 degrees C improved the ordered porous structure. For TEOS, the SAXS results showed that there is an optimum amount of hydrophobic methanol that contributed to dissolve the polymer but did not provoke structural disorder. The less electronegative Br-ions, when compared to Cl-, induced a more ordered porous structure, higher surface areas and larger lattice parameters. For Na(2)Si(3)O(7) the increase on the hydrothermal treatment time as well as the use of an optimized amount of polymer promoted a better ordered porous structure. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a high-resolution reverse-phase liquid chromatography method we found that the tissues of the hermatypic coral Pocillopora capitato (collected in Santiago Bay, Mexico) contain a high diversity of primary and secondary mycosporine-like amino acids (MAAs) typical of some reef-building coral species: mycosporine-glycine, shinorine, porphyra-334, mycosporine-methylamine-serine, mycosporine-methylamine-threonine, palythine-serine, palythine and one additional novel predominant MAA, with an absorbance maximum of 320 nm. Here we document the isolation and characterization of this novel MAA from the coral A capitata. Using low multi-stage mass analyses of deuterated and non deuterated compounds, high-resolution mass analyses (Time of Flight, TOF) and other techniques, this novel compound was characterized as palythine-threonine. Palythine-threonine was also present in high concentrations in the corals Pocillopora eydouxi and Stylophora pistillata indicating a wider distribution of this MAA among reef-building corals. From structural considerations we suggest that palythine-threonine is formed by decarboxylation of porphyra-334 followed by demethylation of mycosporine-methylamine-threonine. (C) 2008 Elsevier B.V. All rights reserved.