2 resultados para PERFORATIONS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives Little information is available on the molecular events that occur during graft incorporation over time. The calvarial bone (Cb) grafts have been reported to produce greater responses compared with other donor regions in maxillofacial reconstructions, but the scientific evidences for this are still lacking. The objectives of this study are (1) to study the morphological pattern of Cb onlay bone grafts and compare them with the biological events through immunohistochemical responses and (2) to establish the effects of perforations in maintaining the volume and bone density of the receptor bed. Material and methods Sixty New Zealand White rabbits were submitted to Cb onlay bone grafts on the mandible. In 30 rabbits, the receptor bed was perforated (perforated group), while for the remaining animals the bed was kept intact (non-perforated group). Six animals from each group were sacrificed at 5, 7, 10, 20 and 60 days after surgery. Histological sections from the grafted area were prepared for immunohistochemical and histological analyses. Immuno-labeling was found for proteins Osteoprotegerin (OPG), receptor activator of nuclear factor-kappa beta ligand (RANKL), alkaline phosphatase (ALP), osteopontin (OPN), vascular endothelial growth factor (VEGF), tartrate-resistant acid phosphatase (TRAP), Type I collagen (COL I) and osteocalcin (OC). The tomography examination [computerized tomography (CT) scan] was conducted just after surgery and at the sacrifice. Results The histological findings revealed that the perforations contributed to higher bone deposition during the initial stages at the graft-receptor bed interface, accelerating the graft incorporation process. The results of the CT scan showed lower resorption for the perforated group (P < 0.05), and both groups showed high bone density rates at 60 days. This set of evidences is corroborated by the immunohistochemical outcomes indicating that proteins associated with revascularization and osteogenesis (VEGF, OPN, TRAP and ALP) were found in higher levels in the perforated group. Conclusions These findings indicate that the bone volume of calvarial grafts is better maintained when the receptor bed is perforated, probably resulting from more effective graft revascularization and greater bone deposition. The process of bone resorption peaked between 20 and 60 days post-operatively in both groups although significantly less in the perforated group. To cite this article:Pedrosa Jr WF, Okamoto R, Faria PEP, Arnez MFM, Xavier SP, Salata LA. Immunohistochemical, tomographic and histological study on onlay bone grafts remodeling. Part II: calvarial bone.Clin. Oral Impl. Res. 20, 2009; 1254-1264.doi: 10.1111/j.1600-0501.2009.01747.x.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first studies concerning the embryonic development of harvestmen started in the late 19th century, and focused mostly on holarctic species, and only three species of the suborder Laniatores (the largest, among the four suborders considered presently) were studied. Moreover, the last studies on embryology of harvestmen were made during the late 1970s. This study focused on the embryonic development of Ampheres leucopheus (Gonyleptidae, Caelopyginae) and Iporangaia pustulosa (Gonyleptidae, Progonyleptoidellinae). The embryonic development was followed in the field, by taking daily photographs of different eggs during about 2 months. When laid, eggs of A. leucopheus and I pustulosa have approximately 1.13 and 1.30 mm in diameter, respectively, and the second is embedded in a large amount of mucus. The eggs grow, mainly due to water absorption at the beginning of the process, and they reach a diameter of about 1.35 and 1.59 mm, respectively, close to hatching. It took, respectively, 29-56 days and 35-66 days from egg laying to hatching. For the description of the embryonic development, we use photographs from the field, SEM micrographs, and histological analysis. This allowed us, for instance, to document the progression of structures and pigmentation directly from live embryos in the field, and to record microstructures, such as the presence of perforations in the cuticle of the embryo in the place where eyes are developing. Yet, contrary to what was expected in the literature, we record an egg tooth in one of the studied laniatoreans. J. Exp. Zool. (Mol. Dev. Evol) 314B:489-502, 2010. (C) 2010 Wiley-Liss, Inc.