56 resultados para PCR-DGGE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro propagated plants are believed to be free of microbes. However, after 5 years of in vitro culture of pineapple plants, without evidence of microbial contamination, the use of culture-independent molecular approach [classifying heterogeneous nucleic acids amplified via universal and specific 16S rRNA gene by polymerase chain reaction (PCR)], and further analysis by denaturing gradient gel electrophoresis (DGGE) revealed endophytic bacteria in roots, young and mature leaves of such plants. The amplification of 16S rRNA gene (Bacteria domain) with the exclusion of the plant chloroplast DNA interference, confirmed the presence of bacterial DNA, from endophytic microorganisms within microplant tissues. PCR-DGGE analysis revealed clear differences on bacterial communities depending on plant organ. Group-specific DGGE analyses also indicated differences in the structures of Actinobacteria, Alphaproteobacteria and Betaproteobacteria communities in each part of plants. The results suggest the occurrence of a succession of bacterial communities colonizing actively the microplants organs. This study is the first report that brings together evidences that pineapple microplants, previously considered axenic, harbor an endophytic bacterial community encompassing members of Actinobacteria, Alphaproteobacteria and Betaproteobacteria group which is responsive to differences in organs due to plant development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Identification of all important community members as well as of the numerically dominant members of a community are key aspects of microbial community analysis of bioreactor samples. A systematic study was conducted with artificial consortia to test whether denaturing gradient gel electrophoresis (DGCE) is a reliable technique to obtain such community data under conditions where results would not be affected by differences in DNA extraction efficiency from cells. A total of 27 consortia were established by mixing DNA extracted from Escherichia coli K12, Burkholderia cepacia and Stenotrophomonas maltophilia in different proportions. Concentrations of DNA of single organisms in the consortia were either 0.04, 0.4 or 4 ng/mu l. DGGE-PCR of genomic DNA with primer sets targeted at the V3 and V6-V8 regions of the 16S rDNA failed to detect the three community members in only 7% of consortia, but provided incorrect information about dominance or co-dominance for 85% and 89% of consortia with the primer sets for the V6-V8 and V3 regions, respectively. The high failure rate in detection of dominant B. cepacia with the primers for the V6-V8 region was attributable to a single nucleoticle primer mismatch in the target sequences of both, the forward and reverse primer. Amplification bias in PCR of E. coli and S. maltophilia for the V6-V8 region and for all three organisms for the V3 region occurred due to interference of genomic DNA in PCR-DGGE, since a nested PCR approach, where PCR-DGGE was started from mixtures of 16S rRNA genes of the organisms, provided correct information about the relative abundance of original DNA in the sample. Multiple bands were not observed in pure culture amplicons produced with the V6-V8 primer pair, but pure culture V3 DGGE profiles of E. coli, S. maltophilia and B. cepacia contained 5, 3 and 3 bands, respectively. These results demonstrate DGGE was suitable for identification of all important community members in the three-membered artificial consortium, but not for identification of the dominant organisms in this small community. Multiple DGGE bands obtained for single organisms with the V3 primer pair could greatly confound interpretation of DGGE profiles. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of a lipase-rich fungal enzymatic preparation, produced by a Penicillium sp. during solid-state fermentation, was evaluated in an anaerobic digester treating dairy wastewater with 1200 mg of oil and grease/L The oil and grease hydrolysis step was carried out with 0.1% (w/v) of solid enzymatic preparation at 30 degrees C for 24 h, and resulted in a final free acid concentration eight times higher than the initial value. The digester operated in sequential batches of 48 h at 30 degrees C for 245 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. However, when the pre-hydrolysis step was removed, the anaerobic digester performed poorly (with an average COD removal of 32%), as the oil and grease accumulated in the biomass and effluent oil and grease concentration increased throughout the operational period. PCR-DGGE analysis of the Bacteria and Archaea domains revealed remarkable differences in the microbial profiles in trials conducted with and without the pre-hydrolysis step, indicating that differences observed in overall parameters were intrinsically related to the microbial diversity of the anaerobic sludge. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to determine the efficiency of an anaerobic stirred sequencing-batch reactor containing granular biomass for the degradation of linear alkylbenzene sulfonate (LAS), a surfactant present in household detergent. The bioreactor was monitored for LAS concentrations in the influent, effluent and sludge, pH, chemical oxygen demand, bicarbonate alkalinity, total solids, and volatile solids. The degradation of LAS was found to be higher in the absence of co-substrates (53%) than in their presence (24-37%). Using the polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE), we identified populations of microorganisms from the Bacteria and Archaea domains. Among the bacteria, we identified uncultivated populations of Arcanobacterium spp. (94%) and Opitutus spp. (96%). Among the Archaea, we identified Methanospirillum spp. (90%), Methanosaeta spp. (98%), and Methanobacterium spp. (96%). The presence of methanogenic microorganisms shows that LAS did not inhibit anaerobic digestion. Sampling at the last stage of reactor operation recovered 61 clones belonging to the domain bacteria. These represented a variety of phyla: 34% shared significant homology with Bacteroidetes, 18% with Proteobacteria, 11% with Verrucomicrobia, 8% with Fibrobacteres, 2% with Acidobacteria, 3% with Chlorobi and Firmicutes, and 1% with Acidobacteres and Chloroflexi. A small fraction of the clones (13%) were not related to any phylum. Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assessment of bacterial communities in soil gives insight into microbial behavior under prevailing environmental conditions. In this context, we assessed the composition of soil bacterial communities in a Brazilian sugarcane experimental field. The experimental design encompassed plots containing common sugarcane (variety SP80-1842) and its transgenic form (IMI-1 - imazapyr herbicide resistant). Plants were grown in such field plots in a completely randomized design with three treatments, which addressed the factors transgene and imazapyr herbicide application. Soil samples were taken at three developmental stages during plant growth and analyzed using 16S ribosomal RNA (rRNA)-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries. PCR-DGGE fingerprints obtained for the total bacterial community and specific bacterial groups - Actinobacteria, Alphaproteobacteria and Betaproteobacteria - revealed that the structure of these assemblages did not differ over time and among treatments. Nevertheless, slight differences among 16S rRNA gene clone libraries constructed from each treatment could be observed at particular cut-off levels. Altogether, the libraries encompassed a total of eleven bacterial phyla and the candidate divisions TM7 and OP10. Clone sequences affiliated with the Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria were, in this order, most abundant. Accurate phylogenetic analyses were performed for the phyla Acidobacteria and Verrucomicrobia, revealing the structures of these groups, which are still poorly understood as to their importance for soil functioning and sustainability under agricultural practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rhizosphere is an ecosystem exploited by a variety of organisms involved in plant health and environmental sustainability. Abiotic factors influence microorganism-plant interactions, but the microbial community is also affected by expression of heterologous genes from host plants. In the present work, we assessed the community shifts of Alphaproteobacteria phylogenetically related to the Rhizobiales order (Rhizobiales-like community) in rhizoplane and rhizosphere soils of wild-type and transgenic eucalyptus. A greenhouse experiment was performed and the bacterial communities associated with two wild-type (WT17 and WT18) and four transgenic (TR-9, TR-15, TR-22, and TR-23) eucalyptus plant lines were evaluated. The culture-independent approach consisted of the quantification, by real-time polymerase chain reaction (PCR), of a targeted subset of Alphaproteobacteria and the assessment of its diversity using PCR-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Real-time quantification revealed a lesser density of the targeted community in TR-9 and TR-15 plants and diversity analysis by principal components analysis, based on PCR-DGGE, revealed differences between bacterial communities, not only between transgenic and nontransgenic plants, but also among wild-type plants. The comparison between clone libraries obtained from the transgenic plant TR-15 and wild-type WT17 revealed distinct bacterial communities associated with these plants. In addition, a culturable approach was used to quantify the Methylobacterium spp. in the samples where the identification of isolates, based on 16S rRNA gene sequences, showed similarities to the species Methylobacterium nodulans, Methylobacterium isbiliense, Methylobacterium variable, Methylobacterium fujisawaense, and Methylobacterium radiotolerans. Colonies classified into this genus were not isolated from the rhizosphere but brought in culture from rhizoplane samples, except for one line of the transgenic plants (TR-15). In general, the data suggested that, in most cases, shifts in bacterial communities due to cultivation of transgenic plants are similar to those observed when different wild-type cultivars are compared, although shifts directly correlated to transgenic plant cultivation may be found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rhizosphere constitutes a complex niche that may be exploited by a wide variety of bacteria. Bacterium-plant interactions in this niche can be influenced by factors such as the expression of heterologous genes in the plant. The objective of this work was to describe the bacterial communities associated with the rhizosphere and rhizoplane regions of tobacco plants, and to compare communities from transgenic tobacco lines (CAB1, CAB2 and TRP) with those found in wild-type (WT) plants. Samples were collected at two stages of plant development, the vegetative and flowering stages (1 and 3 months after germination). The diversity of the culturable microbial community was assessed by isolation and further characterization of isolates by amplified ribosomal RNA gene restriction analysis (ARDRA) and 16S rRNA sequencing. These analyses revealed the presence of fairly common rhizosphere organisms with the main groups Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacilli. Analysis of the total bacterial communities using PCR-DGGE (denaturing gradient gel electrophoresis) revealed that shifts in bacterial communities occurred during early plant development, but the reestablishment of original community structure was observed over time. The effects were smaller in rhizosphere than in rhizoplane samples, where selection of specific bacterial groups by the different plant lines was demonstrated. Clustering patterns and principal components analysis (PCA) were used to distinguish the plant lines according to the fingerprint of their associated bacterial communities. Bands differentially detected in plant lines were found to be affiliated with the genera Pantoea, Bacillus and Burkholderia in WT, CAB and TRP plants, respectively. The data revealed that, although rhizosphere/rhizoplane microbial communities can be affected by the cultivation of transgenic plants, soil resilience may be able to restore the original bacterial diversity after one cycle of plant cultivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to improve the detection of B. abortus by PCR in organs of aborted fetuses from infected cows, an important mechanism to find infected herds on the eradication phase of the program. So, different DNA extraction protocols were compared, focusing the PCR detection of B. abortus in clinical samples collected from aborted fetuses or calves born from cows challenged with the 2308 B. abortus strain. Therefore, two gold standard groups were built based on classical bacteriology, formed from: 32 lungs (17 positives), 26 spleens (11 positives), 23 livers (8 positives) and 22 bronchial lymph nodes (7 positives). All samples were submitted to three DNA extraction protocols, followed by the same amplification process with the primers B4 and B5. From the accumulated results for organ, the proportion of positives for the lungs was higher than the livers (p=0.04) or bronchial lymph nodes (p=0.004) and equal to the spleens (p=0.18). From the accumulated results for DNA extraction protocol, the proportion of positives for the Boom protocol was bigger than the PK (p<0.0001) and GT (p=0.0004). There was no difference between the PK and GT protocols (p=0.5). Some positive samples from the classical bacteriology were negative to the PCR and viceversa. Therefore, the best strategy for B. abortus detection in the organs of aborted fetuses or calves born from infected cows is the use, in parallel, of isolation by classical bacteriology and the PCR, with the DNA extraction performed by the Boom protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melipona quadrifasciata quadrifasciata and M. quadrifasciata anthidioides are subspecies of M. quadrifasciata, a stingless bee species common in coastal Brazil. These subspecies are discriminated by the yellow stripe pattern of the abdominal tergites. We found Vsp I restriction patterns in the cytochrome b region closely associated to each subspecies in 155 M. quadrifasciata colonies of different geographical origin. This mitochondrial DNA molecular marker facilitates diagnosis of M. quadrifasciata subspecies matrilines and can be used to establish their natural distribution and identify hybrid colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to optimize a PCR assay that amplifies an 843 pb fragment from the p28 gene of Ehrlichia canis and compare it with two other PCR methods used to amplify portions of the 16S rRNA and dsb genes of Ehrlichia. Blood samples were collected from dogs suspected of having a positive diagnosis for canine ehrlichiosis. Amplification of the p28 gene by PCR produced an 843-bp fragment and this assay could detect DNA from one gene copy among 1 billion cells. All positive samples detected by the p28-based PCR were also positive by the 16S rRNA nested-PCR and also by the dsb-based PCR. Among the p28-based PCR negative samples, 55.3% were co-negatives, but 27.6% were positive in 16S rRNA and dsb based PCR assays. The p28-based PCR seems to be a useful test for the molecular detection of E. canis, however improvements in this PCR sensitivity are desired, so that it can become an important alternative in the diagnosis of canine ehrlichiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine coronavirus (BCoV) is a member of the group 2 of the Coronavirus (Nidovirales: Coronaviridae) and the causative agent of enteritis in both calves and adult bovine, as well as respiratory disease in calves. The present study aimed to develop a semi-nested RT-PCR for the detection of BCoV based on representative up-to-date sequences of the nucleocapsid gene, a conserved region of coronavirus genome. Three primers were designed, the first round with a 463bp and the second (semi-nested) with a 306bp predicted fragment. The analytical sensitivity was determined by 10-fold serial dilutions of the BCoV Kakegawa strain (HA titre: 256) in DEPC treated ultra-pure water, in fetal bovine serum (FBS) and in a BCoV-free fecal suspension, when positive results were found up to the 10-2, 10-3 and 10-7 dilutions, respectively, which suggests that the total amount of RNA in the sample influence the precipitation of pellets by the method of extraction used. When fecal samples was used, a large quantity of total RNA serves as carrier of BCoV RNA, demonstrating a high analytical sensitivity and lack of possible substances inhibiting the PCR. The final semi-nested RT-PCR protocol was applied to 25 fecal samples from adult cows, previously tested by a nested RT-PCR RdRp used as a reference test, resulting in 20 and 17 positives for the first and second tests, respectively, and a substantial agreement was found by kappa statistics (0.694). The high sensitivity and specificity of the new proposed method and the fact that primers were designed based on current BCoV sequences give basis to a more accurate diagnosis of BCoV-caused diseases, as well as to further insights on protocols for the detection of other Coronavirus representatives of both Animal and Public Health importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious abortion is a significant cause of reproductive failure and economic losses in cattle. The goal of this study was to detect nucleic acids of several infectious agents known to cause abortion including Arcanobacterium pyogenes, Bovine Herpesvirus 1, Brucella abortus, Campylobacter fetus subsp. venerealis, Chlamydophila abortus, Leptospira sp., Listeria monocytogenes, Salmonella sp., Mycoplasma bovis, Mycoplasma bovigenitalium, Neospora caninum, and Tritrichomonas foetus. Tissue homogenates from 42 fetuses and paraffin-embedded tissues from 28 fetuses and 14 placentas/endometrium were included in this study. Brucella abortus was detected in 14.2% (12/84) of the samples. Salmonella sp. DNA was amplified from 2 fetuses, and there was one positive for Neospora caninum, and another for Listeria monocytogenes. This PCR-based approach resulted in identification of the etiology in 19% of samples, or 20% if considered fetal tissues only.