36 resultados para PB-PB GEOCHRONOLOGY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The Borborema Province has three major subprovinces. The northern subprovince lies north of the Patos shear zone and is comprised of Paleoproterozoic cratonic basement with Archean nuclei, plus overlying Neoproterozoic supracrustal rocks and Brasiliano plutonic rocks. The central subprovince occurs between the Patos and Pernambuco shear zones and is mainly comprised of the Zona Transversal. The southern subprovince occurs between the Pernamabuco shear zone and the Sao Francisco craton and is comprised of a tectonic collage of various blocks, terranes, or domains ranging in age from Archean to Neoproterozoic. This report focuses on the Zona Transversal, especially on Brasiliano rocks for which we have the most new information. Paleoproterozoic gneisses with ages of 2.0-2.2 Ga occur discontinuously throughout the Zona Transversal. The Cariris Velhos suite consists of metavolcanic, metasedimentary, and metaplutonic rocks yielding U-Pb zircon ages of 995-960 Ma. This suite is mainly confined to a 100 km wide belt that extends for more than 700 km within the Alto Pajeu terrane. Sm-Nd model ages in metaigneous rocks cluster about 1.3-1.6 Ga, indicating that older crust was involved in genesis of their magmas. Brasiliano supracrustal rocks dominate the Pianco-Alto Brigida terrane, and they probably also constitute significant parts of the Alto Pajeu and Rio Capibaribe terranes. They are only slightly older than early stages of Brasiliano plutonism, with detrital zircon ages at least as young as 620 Ma; most T(DM) ages range from 1.2 to 1.6 Ga. Brasiliano plutons range from ca. 640 to 540 Ma, and their T(DM) ages range from 1.2 to 2.5 Ga. Previous workers have shown significant correlations among U-Pb ages, Sm-Nd model ages, petrology, and geochemistry, and we are able to reinforce and extend these correlations. Stage I plutons formed 640 -610 Ma and have T(DM) ages less than 1.5 Ga. Stage 11 (610-590 Ma) contains few plutons, but coincides with the peak of compressional deformation, metamorphism, and formation of migmatites. Stage III plutons (590 to ca. 575 Ma) have older T(DM) ages (ca. 1.8-2.0 Ga), as do Stage IV plutons (575 to ca. 550 Ma; T(DM) from 1.9 to 2.4 Ga). Stage III plutons formed during the transition from compressional to transcurrent deformation, while Stage IV plutons are mainly post-tectonic. Stage V plutons (550-530 Ma) are commonly undeformed (except along younger shear zones) and have A-type geochemistry. The five stages have distinct geochemical properties, which suggest that the tectonic settings evolved from early, arc-related magma-genesis (Stage I) to within-plate magma-genesis (Stage V), with perhaps some intermediate phases of extensional environments. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Itaoca pluton consists of porphyritic monzogranite that intruded the upper crust into low-grade metasedimentary rocks of the Apiai Dornain (Ribeira Belt). Anisotropy of magnetic susceptibility and zircon U-Pb (Shrimp) geochronology were combined to determine pluton emplacement mechanisms and its chronology relative to the collision structures of the Paranapiacaba (Brasiliano II) orogenic system. Magnetic susceptibility ranges between 4 and 38 x 10(-3) SI, and thermomagnetic measurements indicate multidomain magnetite is the main carrier of anisotropy. The pluton shows an ""onion-skin"" structure roughly elongated to the northeast with its hinge zone including kilometer-wide roof-pendants. Magnetic lineations are variable in orientation in consistency with the dominant oblate symmetry of the magnetic fabric. A distinct NE-trending point-maxima, however, indicates the mean lineation is parallel to the stretching direction of the transpressive deformation that affected the regional host rocks. Prismatic zircon from the monzogranite, both in the core and in the finely-zoned margins, yielded an age of 623 +/- 10 Ma. These results suggest the magmatic fabric recorded the earlier strain increments of the regional shear deformation. It may correspond to the transition from continental arc to collision tectonics of the southern Ribeira Belt. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Zircon recrystallization is a common process during high-grade metamorphism and promotes partial or complete resetting of the original isotopic and chemical characteristics of the mineral and thus complicates U-Pb geochronological interpretation. In Central Brazil, this complexity may be illustrated by three composite mafic-ultramafic intrusions metamorphosed under amphibolite-to-granulite conditions. Their ages of emplacement and metamorphic ages have been a matter of controversy for the last thirty years. The Serra da Malacacheta and Barro Alto complexes make up the southernmost of these layered bodies and four samples from distinct rock types were investigated in order to verify the consequences of metamorphic alteration of zircon for U-Pb dating. Cathodoluminescent imaging reveals internal features which are typical of concomitant dissolution-reprecipitation processes, such as convolute zoning and inward-moving recrystallization fronts, even in samples in which partially preserved igneous textures are observed. Due to this extensive alteration, LA-ICPMS U-Pb isotopic analysis yielded inconclusive data. However, in situ Hf isotopic and trace-element analyses help to clarify the real meaning of the geochronological data. Low Lu/Hf (<0.004) and homogeneous (176)Hf/(177)Hf(t) values imply that the zircon populations within individual samples have crystallized in a single episode, despite the observed variations in age values. Trace element signatures of zircon grains from garnet-bearing samples reveal that they were unreactive to the development of the peak metamorphism mineral assemblage and, thus, the main chemical feature in such grains is attributed to a coupled dissolution-reprecipitation process. However, in the Cafelandia amphibolite an additional alteration process is identified, probably related to the influx of late-stage fluids. Combined isotopic and geochemical investigation on zircon grains allowed the distinction of two magmatic events. The first corresponds to the crystallization of the Serra da Malacacheta Complex and characterizes a juvenile magmatism at similar to 1.3 Ga. The younger episode, recognized in the Barro Alto Complex, is dated at ca. 800 Ma and is represented by mafic and ultramafic rocks showing intense contamination with continental crust, implying that the emplacement took place, most likely, in a continental back-arc setting. Altered zircon domains as well as titanite grains date the metamorphic event at ca. 760-750 Ma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The EI Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670-820 degrees C and 4.5-5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between approximate to 477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The sphene-centered ocellar texture consists of leucocratic ocelli with sphene (titanite) crystals at the center, enclosed in a biotite-rich matrix. This texture has been recognized worldwide in hybrid intermediate rocks. On the basis of structural, petrological, and geochronological data from selected outcrops of the Variscan Ribadelago pluton (NW Iberian Massif), we propose that the ocelli were formed by migration and accumulation of a residual melt through a plagioclase- and biotite-dominated crystalline framework. At the late stage of crystallization, the magma acted as a hyperdense suspension and reacted to the pressure gradient caused by the regional stress field, entering the domain of grain-supported flow. Microstructures reveal that aligned crystal domains arose in the crystal framework from the shearing and compaction of the crystal mush and behaved as magmatic microshears. Relative displacement of adjacent crystal clusters along these microshears corresponded to the onset of Reynolds dilatancy that generated an expansion of the crystal mush, involving melt migration and pore aperture. The mineralogy of the ocelli, dominated by andesine and sphene, represents the composition of the migrating melt. The chemistry of this late, Ti-rich melt stems from the incongruent melting of biotite. Magmatic sphene from the ocelli yields a U-Pb age of 317 +/- 1 Ma, which represents the final crystallization of the hybridized magmatic system. Moreover, this texture offers an opportunity to better understand the rheological behavior of highly crystallized magmas.
Resumo:
The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paragua Terrane (Bolivia and Mato Grosso regions) and in the Alto Guapore Belt and the Rio Negro-Juruena Province (Rondonia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsas Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paragua Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guapore Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paragua Terrane, and the Colorado Complex and the Nova Mamore Metamorphic Suite in the Alto Guapore Belt. The Paragua Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40-1.36 Ga), and the Teotonio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34-1.36 Ga), and the Sao Lourenco-Caripunas Intrusive Suite (1.31-1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Santa Rosa and Sauce Guacho plutons are two post-collisional peraluminous Late Devonian to Early Carboniferous leucogranites that intruded the banded schists of the Ancasti Formation. The leucogranites are composed of microcline phenocrysts along with quartz, plagioclase, muscovite, biotite, ilmenite, tourmaline, apatite, monazite and zircon. Their geochemical composition is consistent with S-type granites and mineralogically they belong to MPG granites (muscovite-peraluminous granites). It is proposed that granite magma generation was related to shear zones that concentrated fluids in the metasedimentary crust during a collision or transcurrent tectonics. U-Pb analyses on monazite gave an age of 369.8 +/- 5.3 Ma, while Sm/Nd isotopic data yield epsilon(Nd(t)) values of -5.3 for Sauce Guacho and -5.7 for Santa Rosa indicating crustal provenance. Nd model ages between 1,544 and 1,571 Ma are within the range of magmatic rocks from the Lower Ordovician Famatinian Arc in the Central Sierras Pampeanas.
Resumo:
The Sunsas-Aguapei province (1.20-0.95 Ga), SW Amazonian Craton, is a key area to study the heterogeneous effects of collisional events with Laurentia, which shows evidence of the Grenvillian and Sunsas orogens. The Sunsas orogen, characterized by an allochthonous collisional-type belt (1.11-1.00 Ga), is the youngest and southwestern most of the events recorded along the cratonic fringe. Its evolution occurred after a period of long quiescence and erosion of the already cratonized provinces (>1.30 Ga), that led to sedimentation of the Sunsas and Vibosi groups in a passive margin setting. The passive margin stage was roughly contemporary with intraplate tectonics that produced the Nova Brasilandia proto-oceanic basin (<1.21 Ga), the reactivation of the Ji-Parana shear zone network (1.18-1.12 Ga) and a system of aborted rifts that evolved to the Huanchaca-Aguapei basin (1.17-1.15 Ga). The Sunsas belt is comprised by the metamorphosed Sunsas and Vibosi sequences, the Rincon del Tigre mafic-ultramafic sill and granitic intrusive suites. The latter rocks yield epsilon(Nd(t)) signatures (-0.5 to -4.5) and geochemistry (S,1, A-types) suggesting their origin associated with a continental arc setting. The Sunsas belt evolution is marked by ""tectonic fronts"" with sinistral offsets that was active from c. 1.08 to 1.05 Ga, along the southern edge of the Paragua microcontinent where K/Ar ages (1.27-1.34 Ga) and the Huanchaca-Aguapei flat-lying cover attest to the earliest tectonic stability at the time of the orogen. The Sunsas dynamics is coeval with inboard crustal shortening, transpression and magmatism in the Nova Brasilandia belt (1.13-1.00 Ga). Conversely, the Aguapei aulacogen (0.96-0.91 Ga) and nearby shear zones (0.93-0.91 Ga) are the late tectonic offshoots over the cratonic margin. The post-tectonic to anorogenic stages took place after ca. 1.00 Ga, evidenced by the occurrences of intra-plate A-type granites, pegmatites, mafic dikes and sills, as well as of graben basins. Integrated interpretation of the available data related to the Sunsas orogen supports the idea that the main nucleus of Rodinia incorporated the terrains forming the SW corner of Amazonia and most of the Grenvillian margin, as a result of two independent collisional events, as indicated in the Amazon region by the Ji-Parana shear zone event and the Sunsas belt, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The 590-580 Ma Itu Granite Province (IGP) is a roughly linear belt of post-orogenic granite plutons similar to 60 km wide extending for some 350 km along the southern edge of the Apia-Guaxupe Terrane in southeastern Brazil. Typical components are subalkaline A-type granites (some with rapakivi texture) that crystallized at varied, but mostly strongly oxidizing conditions, and contrast with a coeval association of also oxidized high-K calc-alkaline granites in terms of major (e. g., lower Ca/Fe) and trace elements (higher Nb, Y, Zr). Mantle-derived magmas (such as those forming the LILE-rich Piracaia Monzodiorite, with epsilon(Nd(t)) = -7 to -10, (87)Sr/(86)Sr((t)) = 0.7045-0.7055) are inferred to derive from enriched subcontinental lithosphere modified during previous subduction, and may have played a role in the generation of the A-type granites, adding melts or fluids or both to the lower crust from which the latter were generated. The IGP is interpreted as a reflection of crust uplift and increased heat flux during ascent of hot, less dense asthenosphere after continental collision, probably reflecting breakoff of an oceanic slab coeval to the right-lateral accretion of a terrane related to the Mantiqueira Orogenic System.
Resumo:
The Itaiacoca Belt is a sequence of metavolcanic and metasedimentary rocks that crop out east of Parana and southeast of Sao Paulo states, in southern Brazil. This geologic-geochronologic study supports division of the Itaiacoca Belt into two major lithologic sequences. The older is a carbonate platform sequence (dolomitic meta-limestones/metamarls/calc-phyllites/ carbonate phyllites) with minimum deposition ages related to the end of the Mesoproterozoic/beginning of the Neoproterozoic (1030-908 Ma:U-Pb, zircon of metabasic rocks). The younger sequence contains mainly clastics deposits (meta-arkoses/metavolcanics/metaconglomerates/metapelites) with deposition ages related to the Neoproterozoic (645-628 Ma:U-Pb,zircon of metavolcanic rocks). These ages are quite close to K-Ar ages (fine fraction) of the 628-610 Ma interval, associated with metamorphism and cooling of the Itaiacoca Belt. The contact between the dolomitic meta-limestones and meta-arkoses is marked by intense stretching and high-angle foliation, suggesting that the discontinuity between these associations resulted from shearing. It is proposed here that the term Itaiacoca Sequence, should represent the dolomitic meta-limestones, and the term Abapa Sequence represents the meta-arkoses/metavolcanics/phyllites. in a major tectonic context, these periods are related to the break-up of Rodinia Supercontinent (1030-908 Ma) and the amalgamation of the Gondwana Supercontinent (645-628 Ma). (C) 2008 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Amazonian Craton comprises an Archean domain surrounded by four successively younger Proterozoic tectonic provinces. Within the Rio-Negro-Juruena province the Serra da Providencia Intrusive Suite (1.60 and 1.53 Ga) consists of A-type rapakivi granites, charnockites and mangerites genetically associated with diabase dikes, gabbros and amphibolites lites. The original mafic melts were derived from a depleted mantle source (epsilon(Nd(T)) + 2.5 to +2.8; epsilon(Sr(T)) - 12.1). Underplated mafic magma induced melting of a short-lived fielsic crust, thus originating coeval felsic-inafic magmatism in a continental intraplate setting. The Colorado Complex, assigned to the Rondonian-San Ignacio province, comprises 1.35-1.36 Ga intrusive bimodal magmatism represented by monzonite gneisses associated with amphibolite, gabbro and metadiabase dikes intercalated with metasediments with detrital zircon that yield U-Pb ages of 1.35 to 1.42 Ga. Mafic samples display juvenile signatures (epsilon(Nd(T)) 0.0 to +5.2; epsilon(Sr(T)) -5.0 to -30.7) and are less contaminated than the Serra da Previdencia and Nova Brasiladndia ones. The generation of the basaltic magma is related to the subduction of an oceanic slab below the peridotite wedge (intraoceanic arc setting). Fluids and/or small melts from the slab impregnated the mantle. The Nova Brasilandia Sequence (Sunsas-Aguapei province) comprises a metasedimentary sequence intruded by 1.10-1.02 Ga metadiabases, gabbros, meta-gabbros, and amphibolites associated with granitic plutons (bimodal magmatism). The original tholeiitic magmas, derived from a depleted source (epsilon(Nd(T)) = +3.1 to +5.0), in a proto-oceanic setting, underwent subsequent contamination by the host rocks, as indicated by the isotopic and trace element data.
Resumo:
We used the fabrics of two granite plutons and U/Pb (SHRIMP) zircon ages to constrain the tectonic evolution of the E-trending Patos shear zone (Borborema Province, NE Brazil). The pre-tectonic Teixeira batholith consists of an amphibole leucogranite locally with aegirine-augite. Zircons from a syenogranite yielded crystallization ages of 591 +/- 5 Ma. The batholith fabrics were determined by anisotropy of magnetic susceptibility (AMS) and mineral shape preferred orientation. The fabrics support pre-transcurrent batholith emplacement, as evidenced by: (i) magmatic/magnetic fabrics in low susceptibility (<0.35 mSI) leucogranites highly discordant to the regional host rock structure, and (ii) concordant magnetic fabrics restricted to high susceptibility (>1 mSI) corridors connected to shear zones branching off from Patos. One of these satellite shear zones controlled the syntectonic emplacement of the Serra Redonda pluton, which yields a crystallization age of 576 +/- 3 Ma. This late shearing event marks the peak regional deformation that, south of Patos, was coupled to crustal shortening nearly perpendicular to the shear belt. The chronology of the deformational events indicates that the major shear zones of the eastern Borborema are late structures active after the crustal blocks amalgamated. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Rio Apa cratonic fragment crops out in Mato Grosso do Sul State of Brazil and in northeastern Paraguay. It comprises Paleo-Mesoproterozoic medium grade metamorphic rocks, intruded by granitic rocks, and is covered by the Neoproterozoic deposits of the Corumbi and Itapocurni Groups. Eastward it is bound by the southern portion of the Paraguay belt. In this work, more than 100 isotopic determinations, including U-Pb SHRIMP zircon ages, Rb-Sr and Sm-Nd whole-rock determinations, as well as K-Ar and Ar-Ar mineral ages, were reassessed in order to obtain a complete picture of its regional geological history. The tectonic evolution of the Rio Apa Craton starts with the formation of a series of magmatic arc complexes. The oldest U-Pb SHRIMP zircon age comes from a banded gneiss collected in the northern part of the region, with an age of 1950 +/- 23 Ma. The large granitic intrusion of the Alumiador Batholith yielded a U-Pb zircon age of 1839 +/- 33 Ma, and from the southeastern part of the area two orthogneisses gave zircon U-Pb ages of 1774 +/- 26 Ma and 1721 +/- 25 Ma. These may be coeval with the Alto Terere metamorphic rocks of the northeastern corner, intruded in their turn by the Baia das Garcas granitic rocks, one of them yielding a zircon U-Pb age of 1754 +/- 49 Ma. The original magmatic protoliths of these rocks involved some crustal component, as indicated by the Sm-Nd TDm model ages, between 1.9 and 2.5 Ga. Regional Sr isotopic homogenization, associated with tectonic deformation and medium-grade metamorphism occurred at approximately 1670 Ma, as suggested by Rb-Sr whole rock reference isochrons. Finally, at 1300 Ma ago, the Ar work indicates that the Rio Apa Craton was affected by widespread regional heating, when the temperature probably exceeded 350 degrees C. Geographic distribution, age and isotopic signature of the fithotectonic units suggest the existence of a major suture separating two different tectonic domains, juxtaposed at about 1670 Ma. From that time on, the unified Rio Apa continental block behaved as one coherent and stable tectonic unit. It correlates well with the SW corner of the Amazonian Craton, where the medium-grade rocks of the Juruena-Rio Negro tectonic province, with ages between 1600 and 1780 Ma, were reworked at about 1300 Ma. Looking at the largest scale, the Rio Apa Craton is probably attached to the larger Amazonian Craton, and the actual configuration of southwestern South America is possibly due to a complex arrangement of allochthonous blocks such as the Arequipa, Antofalla and Pampia, with different sizes, that may have originated as disrupted parts of either Laurentia or Amazonia, and were trapped during later collisions of these continental masses.
Resumo:
This paper examines the extensive regions of Proterozoic accretionary belts that either formed most of the Amazonian Craton, or are marginal to its southeastern border. Their overall geodynamic significance is considered taking into account the paleogeographic reconstruction of Columbia, Rodinia and Gondwana. Amazonia would be part of Columbia together With Laurentia, North China and Baltica, forming a continuous, continental landmass linked by the Paleo- to Mesoproterozoic mobile belts that constitute large portions of it. The Rodinia supercontinent was formed in the Mesoproterozoic by the agglutination of the existing cratonic fragments, such as Laurentia and Amazonia, during contemporary continental collisions worldwide. The available paleomagnetic data suggest that Laurentia and Amazonia remained attached until at least 600 Ma. Since all other cratonic units Surrounding Laurentia have already rifted away by that time, the separation between Amazonia and Laurentia marks the final break-up of Rodinia with the opening of the lapetus ocean. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Amazonian craton in the Sao Felix do Xingu city, southeast region of the Para state, north of Brazil, hosts exceptionally well-preserved Paleoproterozoic bimodal magmatic units grouped in the Sobreiro and Santa Rosa formations. These formations are correlated to the Uatuma magmatic event, which is largely distributed in the Amazonian craton occupying more than 1,500,000 km(2). Geological mapping and petrographical observations reveal distinct spectra of volcanic facies in both formations. The basal calc-alkaline Sobreiro Formation is composed mainly of andesitic and dacitic lava flows and associated volcaniclastic facies of autoclastic origin, with subordinate pyroclastic flow deposits. This formation shows inferred eruption style that is similar to those in Flood Basalt Provinces, with rare scutulum-type lava shields. The upper A-type Santa Rosa Formation was generated by multicyclic explosive and effusive episodes predominantly associated with large fissures and is materialized by voluminous ignimbrites with subordinated ash-fall tuff, crystal tuff, lapilli-tuff, co-ignimbritic breccias, rhyolitic dikes and domes, and associated granitic porphyries and equigranular granitic intrusions. Ignimbrite and rhyolite dikes reveal conspicuous vertical flow pattern pointing to a fissure-controlled eruption, similar to Sierra Madre Occidental ignimbrite province. The proposed evolutionary model for the Sao Felix do Xingu units differs from those of other occurrences related to the Uatuma magmatic event in the Amazonian craton, characterized by predominance of A-type volcanism and contemporaneous granites. (C) 2010 Elsevier B.V. All rights reserved.