2 resultados para Otto Maria Carpeaux

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aim: Knowledge about the genetic factors responsible for noise-induced hearing loss (NIHL) is still limited. This study investigated whether genetic factors are associated or not to susceptibility to NIHL. Subjects and methods: The family history and genotypes were studied for candidate genes in 107 individuals with NIHL, 44 with other causes of hearing impairment and 104 controls. Mutations frequently found among deaf individuals were investigated (35delG, 167delT in GJB2, Delta(GJB6- D13S1830), Delta(GJB6- D13S1854) in GJB6 and A1555G in MT-RNR1 genes); allelic and genotypic frequencies were also determined at the SNP rs877098 in DFNB1, of deletions of GSTM1 and GSTT1 and sequence variants in both MTRNR1 and MTTS1 genes, as well as mitochondrial haplogroups. Results: When those with NIHL were compared with the control group, a significant increase was detected in the number of relatives affected by hearing impairment, of the genotype corresponding to the presence of both GSTM1 and GSTT1 enzymes and of cases with mitochondrial haplogroup L1. Conclusion: The findings suggest effects of familial history of hearing loss, of GSTT1 and GSTM1 enzymes and of mitochondrial haplogroup L1 on the risk of NIHL. This study also described novel sequence variants of MTRNR1 and MTTS1 genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Hereditary nonsyndromic deafness is an autosomal recessive condition in about 80% of cases, and point mutations in the GJB2 gene (connexin 26) and two deletions in the GJB6 gene (connexin 30), del(GJB6-D13S1830) and del(GJB6-D13S1854), are reported to account for 50% of recessive deafness, Aiming at establishing the frequencies of GJB2 mutations and GJB6 deletions in the Brazilian population, we screened 300 unrelated individuals with hearing impairment, who were not affected by known deafness related syndromes. Methods: We firstly screened the most frequently reported mutations, c.35delG and c.167delT in the GJB2 gene, and del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, through specific techniques. The detected c.35delG and c.167delT mutations were validated by sequencing. Other mutations in the GJB2 gene were screened by single-strand conformation polymorphism and the coding region was sequenced when abnormal patterns were found. Results: Pathogenic mutations in GJB2 and GJB6 genes were detected in 41 individuals (13.7%), and 80.5% (33/41) presented these mutations in homozygosis or compound heterozygosis, thus explaining their hearing defect. The c.35delG in the GJB2 gene was the most frequent mutation (37/300; 12.4%), detected in 23% familial and 6.2% the sporadic cases. The second most frequent mutation (1%; 3/300) was the del(GJB6- D13S1830), always found associated with the c.35delG mutation. Nineteen different sequence variations were found in the GJB2 gene. In addition to the c.35delG mutation, nine known pathogenic alterations were detected 0 67delT, p.Trp24X, p.Val37lle, c.176_191del16, c.235delC, p.Leu90Pro, p.Arg127His, c.509insA, and p.Arg184Pro, Five substitutions had been previously considered benign polymorphisms: c.-15C>T, p.Val27lle, p.Met34hr, p.Ala40Ala, and p.Gly160Ser. Two previously reported Mutations of unknown pathogenicity were found (p.Lys168Arg, and c.684C>A), and two novel substitutions, p.Leu81Val (c.G241C) and p.Met195Val (c.A583G), both in heterozygosis without an accompanying mutation in the other allele. None of these latter four variants of undefined status was present in a sample of 100 hearing controls. Conclusions: The present study demonstrates that Mutations in the GJB2 gene and del(GJB6 D13S1830) are important causes of hearing impairment in Brazil, thus justifying their screening in a routine basis. The diversity of variants in our sample reflects the ethnic heterogeneity of the Brazilian population.