3 resultados para Ottimizzazione albero motore Diesel
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The environmental chemical 1,2-naphthoquinone (1,2-NQ) is implicated in the exacerbation of airways diseases induced by exposure to diesel exhaust particles (DEP), which involves a neurogenic-mediated mechanism. Plasma extravasation in trachea, main bronchus and lung was measured as the local (125)I-bovine albumin accumulation. RT-PCR quantification of TRPV1 and tachykinin (NK(1) and NK(2)) receptor gene expression were investigated in main bronchus. Intratracheal injection of DEP (1 and 5 mg/kg) or 1,2-NQ (35 and 100 nmol/kg) caused oedema in trachea and bronchus. 1,2-NQ markedly increased the DEP-induced responses in the rat airways in an additive rather than synergistic manner. This effect that was significantly reduced by L-732,138, an NK(1) receptor antagonist, and in a lesser extent by SR48968, an NK(2) antagonist. Neonatal capsaicin treatment also markedly reduced DEP and 1,2-NQ-induced oedema. Exposure to pollutants increased the TRPV1, NK(1) and NK(2) receptors gene expression in bronchus, an effect was partially suppressed by capsaicin treatment. In conclusion, our results are consistent with the hypothesis that DEP-induced airways oedema is highly influenced by increased ambient levels of 1,2-NQ and takes place by neurogenic mechanisms involving up-regulation of TRPV1 and tachykinin receptors.
Resumo:
Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25,15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mLL(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill`s catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde. MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mLL(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mLL(-1) diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Many factors can affect the quality of diesel oil, in particular the degradation processes that are directly related to some organosulfur compounds. During the degradation process, these compounds are oxidized into their corresponding sulfonic acids, generating a strong acid content during the process. p-Toluene sulfonic acid analysis was performed using the linear sweep voltammetry technique with a platinum ultramicroelectrode in aqueous solution containing 3 mol L(-1) potassium chloride. An extraction step was introduced prior to the voltammetric detection in order to avoid the adsorption of organic molecules, which inhibit the electrochemical response. The extraction step promoted the transference of sulfonic acid from the diesel oil to an aqueous phase. The method was accurate and reproducible, with detection and quantification limits of 5 ppm and 15 ppm, respectively. Recovery of sulfonic acid was around 90%.