5 resultados para Osteoblast
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Resumo:
The present study aimed to evaluate whether the association between a calcium hydroxide paste (Calen paste) and 0.4% chlorhexidine (CHX) affects the development of the osteogenic phenotype in vitro. With rat calvarial osteogenic cell cultures, the following parameters were assayed: cell morphology and viability, alkaline phosphatase activity, total protein content, bone sialoprotein immunolocalization, and mineralized nodule formation. Comparisons were carried out by using the nonparametric Kruskal-Wallis test (level of significance, 5%). The results showed that the association between Calen paste and 0.4% CHX did not affect the development of the osteogenic phenotype. No significant changes were observed in terms of cell shape, cell viability, alkaline phosphatase activity, and the total amount of bone-like nodule formation among control, Calen, or Calen + CHX groups. The strategy to combine Ca(OH)(2) and CHX to promote a desirable synergistic antibacterial effect during endodontic treatment in vivo might not significantly affect osteoblastic cell biology. (J Endod 2008;34:1485-1489)
Resumo:
The information concerning the molecular events taking place in onlay bone grafts are still incipient. The objective of the present study is to correlate the effects of perforation of resident bone bed on (1) the timing of onlay autogenous graft revascularization; (2) the maintenance of volume/density of the graft (assessed through tomography); and (3) the occurrence of bone remodeling proteins (using immunohistochemistry technique) delivered in the graft. Thirty-six New Zealand White rabbits were subjected to iliac crest onlay bone grafting on both sides of the mandible. The bone bed was drill-perforated on one side aiming at accelerating revascularization, whereas on the other side it was kept intact. After grafts fixation and flaps suture all animals were submitted to tomography on both mandible sites. Six animals were sacrificed, respectively, at 3, 5, 7, 10, 20 and 60 days after surgery. A second tomography was taken just before sacrifice. Histological slides were prepared from each grafted site for both immunohistochemistry analysis [osteopontin, osteocalcin, type I collagen and vascular endothelial growth factor (VEGF) anti-bodies] and histometric analysis. The values on bone volume measured on tomography showed no statistic significance (P >= 0.05) between perforated and intact sites. Grafts placed on perforated beds showed higher bone density values compared with non-perforated ones at 3 days (P <= 0.05). This correlation was inverted at 60 days postoperatively. The findings from VEGF labeling revealed a tendency for earlier revascularization in the perforated group. The early revascularization of bone grafts accelerated the bone remodeling process (osteocalcin, type I collagen and osteopontin) that led to an increased bone deposition at 10 days. The extended osteoblast differentiation process at intermediate stages in the perforated group cooperated for a denser bone at 60 days.
Resumo:
Thyroid hormone (TH) plays a key role on post-natal bone development and metabolism, while its relevance during fetal bone development is uncertain. To Study this, pregnant once were made hypothyroid and fetuses harvested at embryonic days (E) 12.5, 14.5, 16.5 and 18.5. Despite a marked reduction in fetal tissue concentration of both T4 and T3, bone development, as assessed at the distal epiphyseal growth plate of the femur and vertebra, was largely preserved Lip to E16.5. Only at E18.5, the hypothyroid fetuses exhibited a reduction in femoral type I and type X collagen and osteocalcin mRNA levels, in the length and area of the proliferative and hypertrophic zones, in the number of chondrocytes per proliferative column, and in the number of hypertrophic chondrocyres, in addition to a slight delay in endochondral and intramembranous ossification. This Suggests that LIP to E 16.5, thyroid hormone signaling in bone is kept to a minimum. In fact, measuring the expression level of the activating and inactivating iodothyronine deiodinases (D2 and D3) helped understand how this is achieved. D3 mRNA was readily detected as early as E14.5 and its expression decreased markedly (similar to 10-fold) at E18.5, and even more at 14 days after birth (P14). In contrast. D2 mRNA expression increased significantly by E18.5 and markedly (similar to 2.5-fold) by P14. The reciprocal expression levels of D2 and D3 genes during early bone development along with the absence of a hypothyroidism-induced bone phenotype at this time Suggest that coordinated reciprocal deiodinase expression keeps thyroid hormone signaling in bone to very low levels at this early stage of bone development. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A new copper(II) complex of santonic acid [Cu(2)(sant)(4)(H(2)O)(2)]center dot 21/2H(2)O has been prepared and characterized by electronic, vibrational, EPR spectral studies, and stability determinations in solution. The presence of two antiferrromagnetically coupled copper centers in the solid state was detected by EPR. The dinuclear Cu(II) complex crystallizes in the tetragonal P4(3)2(1)2 space group, with a = b = 14.498(3), c = 64.07(1) angstrom. Biological studies indicate that the complex displays interesting potential antitumoral actions. (C) 2008 Elsevier Ltd. All rights reserved.