5 resultados para Optimal solutions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The constrained compartmentalized knapsack problem can be seen as an extension of the constrained knapsack problem. However, the items are grouped into different classes so that the overall knapsack has to be divided into compartments, and each compartment is loaded with items from the same class. Moreover, building a compartment incurs a fixed cost and a fixed loss of the capacity in the original knapsack, and the compartments are lower and upper bounded. The objective is to maximize the total value of the items loaded in the overall knapsack minus the cost of the compartments. This problem has been formulated as an integer non-linear program, and in this paper, we reformulate the non-linear model as an integer linear master problem with a large number of variables. Some heuristics based on the solution of the restricted master problem are investigated. A new and more compact integer linear model is also presented, which can be solved by a branch-and-bound commercial solver that found most of the optimal solutions for the constrained compartmentalized knapsack problem. On the other hand, heuristics provide good solutions with low computational effort. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
This paper deals with the classical one-dimensional integer cutting stock problem, which consists of cutting a set of available stock lengths in order to produce smaller ordered items. This process is carried out in order to optimize a given objective function (e.g., minimizing waste). Our study deals with a case in which there are several stock lengths available in limited quantities. Moreover, we have focused on problems of low demand. Some heuristic methods are proposed in order to obtain an integer solution and compared with others. The heuristic methods are empirically analyzed by solving a set of randomly generated instances and a set of instances from the literature. Concerning the latter. most of the optimal solutions of these instances are known, therefore it was possible to compare the solutions. The proposed methods presented very small objective function value gaps. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this work, we deal with the problem of packing (orthogonally and without overlapping) identical rectangles in a rectangle. This problem appears in different logistics settings, such as the loading of boxes on pallets, the arrangements of pallets in trucks and the stowing of cargo in ships. We present a recursive partitioning approach combining improved versions of a recursive five-block heuristic and an L-approach for packing rectangles into larger rectangles and L-shaped pieces. The combined approach is able to rapidly find the optimal solutions of all instances of the pallet loading problem sets Cover I and II (more than 50 000 instances). It is also effective for solving the instances of problem set Cover III (almost 100 000 instances) and practical examples of a woodpulp stowage problem, if compared to other methods from the literature. Some theoretical results are also discussed and, based on them, efficient computer implementations are introduced. The computer implementation and the data sets are available for benchmarking purposes. Journal of the Operational Research Society (2010) 61, 306-320. doi: 10.1057/jors.2008.141 Published online 4 February 2009