6 resultados para Office site selection
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Changes in species composition is an important process in many ecosystems but rarely considered in systematic reserve site selection. To test the influence of temporal variability in species composition on the establishment of a reserve network, we compared network configurations based on species data of small mammals and frogs sampled during two consecutive years in a fragmented Atlantic Forest landscape (SE Brazil). Site selection with simulated annealing was carried out with the datasets of each single year and after merging the datasets of both years. Site selection resulted in remarkably divergent network configurations. Differences are reflected in both the identity of the selected fragments and in the amount of flexibility and irreplaceability in network configuration. Networks selected when data for both years were merged did not include all sites that were irreplaceable in one of the 2 years. Results of species number estimation revealed that significant changes in the composition of the species community occurred. Hence, temporal variability of community composition should be routinely tested and considered in systematic reserve site selection in dynamic systems.
Resumo:
Bourguyia hamata females oviposit almost exclusively inside the rosette formed by the curled leaves of the epiphytic bromeliad Aechmea nudicaulis. We investigated whether the architecture of the individual bromeliads influences oviposition site selection by this harvestman species. We collected data on the presence of clutches inside bromeliads, rosette length, rosette slope in relation to tree trunks, and the amount of debris inside the rosette. Additionally, we measured the water volume inside the rosettes as well as the variation in the humidity inside and outside bromeliads with long and short rosettes. Longer rosettes were preferred as oviposition site possibly because they accumulate more water and maintain lower internal humidity variation than the external environment. Although the slope of the rosettes did not influence the occurrence of oviposition, the probability of debris accumulation inside the rosettes increased with their slope, and the frequency of clutches was greater in bromeliads with small amounts of debris. A field experiment showed that bromeliads with water inside the rosette were more frequently used as oviposition sites than bromeliads without water. In conclusion, females oviposit predominantly in bromeliads that accumulate more water and have small amounts of debris inside the rosettes, probably because these characteristics promote a more adequate microhabitat for egg development.
Resumo:
Although studies classify the polygynous mating system of a given species into female defense polygyny (FDP) or resource defense polygyny (RDP), the boundary between these two categories is often slight. Males of some species may even shift between these two types of polygyny in response to temporal variation in social and environmental conditions. Here, we examine the mating system of the Neotropical harvestman Acutisoma proximum and, in order to assess if mate acquisition in males corresponds to FDP or RDP, we tested four contrasting predictions derived from the mating system theory. At the beginning of the reproductive season, males fight with other males for the possession of territories on the vegetation where females will later oviposit, as expected in RDP. Females present a marked preference for specific host plant species, and males establish their territories in areas where these host plants are specially abundant, which is also expected in RDP. Later in the reproductive season, males reduce their patrolling activity and focus on defending individual females that are ovipositing inside their territories, as what occurs in FDP. This is the first described case of an arachnid that exhibits a shift in mating system over the reproductive season, revealing that we should be cautious when defining the mating system of a species based on few observations concentrated in a brief period.
Resumo:
Stingless bees (Meliponini) construct their own species-specific nest entrance. The size of this entrance is under conflicting selective pressures. Smaller entrances are easier to defend; however, a larger entrance accommodates heavier forager traffic. Using a comparative approach with 26 species of stingless bees, we show that species with greater foraging traffic have significantly larger entrances. Such a strong correlation between relative entrance area and traffic across the different species strongly suggests a trade-off between traffic and security. Additionally, we report on a significant trend for higher forager traffic to be associated with more guards and for those guards to be more aggressive. Finally, we discuss the nest entrance of Partamona, known in Brazil as boca de sapo, or toad mouth, which has a wide outer entrance but a narrow inner entrance. This extraordinary design allows these bees to finesse the defensivity/traffic trade-off.
Resumo:
Cell division in bacteria is carried out by an elaborate molecular machine composed of more than a dozen proteins and known as the divisome. Here we describe the characterization of a new divisome protein in Bacillus subtilis called YpsB. Sequence comparisons and phylogentic analysis demonstrated that YpsB is a paralog of the division site selection protein DivIVA. YpsB is present in several gram-positive bacteria and likely originated from the duplication of a DivIVA-like gene in the last common ancestor of bacteria of the orders Bacillales and Lactobacillales. We used green fluorescent protein microscopy to determine that YpsB localizes to the divisome. Similarly to that for DivIVA, the recruitment of YpsB to the divisome requires late division proteins and occurs significantly after Z-ring formation. In contrast to DivIVA, however, YpsB is not retained at the newly formed cell poles after septation. Deletion analysis suggests that the N terminus of YpsB is required to target the protein to the divisome. The high similarity between the N termini of YpsB and DivIVA suggests that the same region is involved in the targeting of DivIVA. YpsB is not essential for septum formation and does not appear to play a role in septum positioning. However, a ypsB deletion has a synthetic effect when combined with a mutation in the cell division gene ftsA. Thus, we conclude that YpsB is a novel B. subtilis cell division protein whose function has diverged from that of its paralog DivIVA.
Resumo:
When assessing fragmentation effects on species, not only habitat preferences on the landscape scale, but also microhabitat selection is an important factor to consider, as microhabitat is also affected by habitat disturbance, but nevertheless essential for species for foraging, nesting and sheltering. In the Atlantic Rainforest of Brazil we examined microhabitat selection of six Pyriglena leucoptera (white-shouldered fire-eye), 10 Sclerurus scansor (rufous-breasted leaftosser), and 30 Chiroxiphia caudata (blue manakin). We radio-tracked the individuals between May 2004 and February 2005 to gain home ranges based on individual fixed kernels. Vegetation structures in core plots and fringe plots were compared. In C. caudata, we additionally assessed the influence of behavioural traits on microhabitat selection. Further, we compared microhabitat structures in the fragmented forest with those in the contiguous, and contrasted the results with the birds` preferences. Pyriglena leucoptera preferred liana tangles that were more common in the fragmented forest, whereas S. scansor preferred woody debris, open forest floor (up to 0.5 m), and a thin closed leaf litter cover which all occurred significantly more often in the contiguous forest. Significant differences were detected in C. caudata for vegetation densities in the different strata; the distance of core plots to the nearest lek site was significantly influenced by sex and age. However, core sites of C. caudata in fragmented and contiguous forests showed no significant differences in structure. Exploring microhabitat selection and behavior may greatly support the understanding of habitat selection of species and their susceptibility to fragmentation on the landscape scale.