67 resultados para Oct-4 Transcription Factor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Members of the nuclear factor of activated T cell (NFAT) family of transcription factors were originally described in T lymphocytes but later shown to be expressed in several immune and non-immune cell types. NFAT proteins can modulate cellular transformation intrinsically, and NFAT-deficient (NFAT1-/-) mice are indeed more susceptible to transformation than wild-type counterparts. However, the contribution of an NFAT1-/- microenvironment to tumor progression has not been studied. We have addressed this question by inoculating NFAT1-/- mice with B16F10 melanoma cells intravenously, an established model of tumor homing and growth. Surprisingly, NFAT1-/- animals sustained less tumor growth in the lungs after melanoma inoculation than wild-type counterparts. Even though melanoma cells equally colonize NFAT1-/- and wild-type lungs, tumors do not progress in the absence of NFAT1 expression. A massive mononuclear perivascular infiltrate and reduced expression of TGF-beta in the absence of NFAT1 suggested a role for tumor-infiltrating immune cells and the cytokine milieu. However, these processes are independent of an IL-4-induced regulatory tumor microenvironment, since lack of this cytokine does not alter the phenotype in NFAT1-/- animals. Bone marrow chimera experiments meant to differentiate the contributions of stromal and infiltrating cells to tumor progression demonstrated that NFAT1-induced susceptibility to pulmonary tumor growth depends on NFAT1-expressing parenchyma rather than on bone marrow-derived cells. These results suggest an important role for NFAT1 in radio-resistant tumor-associated parenchyma, which is independent of the anti-tumor immune response and Th1 versus Th2 cytokine milieu established by the cancer cells, but able to promote site-specific tumor growth.
Resumo:
There are some unusual histologic variants of prostate carcinoma, including mucinous, signet-ring cells, and ductal carcinomas that can metastasize in a problematic way and simulate lung, colorectal, or bladder primaries. Currently, antibodies that are organ-specific have been used in the routine surgical pathology practice. Our aim is to study the profile of expression of Cdx2, thyroid transcription factor 1 (TTF1), and cytokeratin 20 (CK20) in prostate cancer with unusual histologic finding. Twenty-nine prostate adenocarcinomas with unusual histologic findings were submitted to immunohistochemistry with prostate-specific antigen (PSA), CK20, Cdx2, and TTF1 antibodies. There were 7 mucinous, 5 ductal, 2 signet-ring cells, and 15 usual acinar adenocarcinomas with focal mucinous differentiation. To compare the results with usual acinar adenocarcinomas, we studied 10 primary and their respective lymph node metastases in a tissue microarray, 2 unusual metastatic adenocarcinomas, and 6 usual acinar high-grade carcinomas. For tumors with special histologic finding, Cdx2 was expressed by 9 (31.0%) mucinous, signet-cell, or with focal mucinous differentiation. Thyroid transcription factor I was moderately positive in mucinous differentiation areas of 2 (6.9%) adenocarcinomas. Cytokeratin 20 was expressed by 9 (31.0%) tumors, among them, 3 ductal adenocarcinomas. Prostate-specific antigen was positive in 28 (96.6%) cases and negative in I ductal adenocarcinoma. There was only I worrisome ductal adenocarcinoma that was strongly CK20 positive and PSA negative. Almost one third of mucinous prostate carcinomas express Cdx2. Cytokeratin 20 can be positive also in one third of prostate carcinomas, especially the ductal type. Pathologist should be alert when evaluating immumohistochemical profiles of unusual histologic findings of prostate cancer, mostly in distant sites. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids TFAM plays an important role in mitochondrial transcription and replication TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated However, a function for TFAM in BER has not yet been investigated This study examines the role of TFAM in BER In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase gamma (pol gamma) On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in alpha OGG1 protein levels TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-Induced inhibition of BER proteins Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions Published by Elsevier B V
Resumo:
XACb0070 is an uncharacterized protein coded by the two large plasmids isolated from Xanthomonas axonopodis pv. cirri, the agent of citrus canker and responsible for important economical losses in citrus world production. XACb0070 presents sequence homology only with other hypothetical proteins belonging to plant pathogens, none of which have their structure determined. The NMR-derived solution structure reveals this protein is a homodimer in which each monomer presents two domains with different structural and dynamic properties: a folded N-terminal domain with beta alpha alpha topology which mediates dimerization and a long disordered C-terminal tail. The folded domain shows high structural similarity to the ribbon-helix-helix transcriptional repressors, a family of DNA-binding proteins of conserved 3D fold but low sequence homology: indeed XACb0070 binds DNA. Primary sequence and fold comparison of XACb0070 with other proteins of the ribbon-helix-helix family together with examination of the genes in the vicinity of xacb0070 suggest the protein might be the component of a toxin-antitoxin system. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: Cardiac remodeling is generally an adverse sign and is associated with heart failure (HF) progression. NFkB, an important transcription factor involved in many cell survival pathways, has been implicated in the remodeling process, but its role in the heart is still controversial. Recently, a promoter polymorphism associated with a lesser activation of the NFKB1 gene was also associated with Dilated Cardiomyopathy. The purpose of this study was to evaluate the association of this polymorphism with clinical and functional characteristics of heart failure patients of different etiologies. Methods: A total of 493 patients with HF and 916 individuals from a cohort of individuals from the general population were investigated. The NFKB1-94 insertion/deletion ATTG polymorphism was genotyped by High Resolution Melt discrimination. Allele and genotype frequencies were compared between groups. In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotype groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the polymorphism were compared regarding disease onset and mortality incidence in HF patients. Results: We did not find differences in genotype and allelic frequencies between cases and controls. Interestingly, we found an association between the ATTG(1)/ATTG(1) genotype with right ventricle diameter (P = 0.001), left ventricle diastolic diameter (P = 0.04), and ejection fraction (EF) (P = 0.016), being the genotype ATTG(1)/ATTG(1) more frequent in patients with EF lower than 50% (P = 0.01). Finally, we observed a significantly earlier disease onset in ATTG(1)/ATTG(1) carriers. Conclusion: There is no genotype or allelic association between the studied polymorphism and the occurrence of HF in the tested population. However, our data suggest that a diminished activation of NFKB1, previously associated with the ATTG(1)/ATTG(1) genotype, may act modulating on the onset of disease and, once the individual has HF, the genotype may modulate disease severity by increasing cardiac remodeling and function deterioration.
Resumo:
Background The treatment and prognosis of nasal polyposis (NP) may be influenced by transcription factors, but their expression is poorly understood. Objective To determine the expression of transcription factors [(nuclear factor-kappa B) NF-kappa B and (activator protein) AP-1], cytokines [IL-1 beta, TNF-alpha and (granulocytes and macrophage colony-stimulating factor) GM-CSF], growth factor (b-FGF), chemokine (eotaxin-2) and adhesion molecule (ICAM-1) in NP in comparison with nasal mucosa controls. Methods Cross-sectional study. Twenty biopsies of nasal polyps were compared with eight middle turbinate biopsies. p65, c-Fos, IL-1 beta, TNF-alpha, ICAM-1, b-FGF, eotaxin-2 and GM-CSF were analysed through RQ-PCR, and p65 and c-Fos were also analysed through Western blotting. Results NF-kappa B expression was increased in patients with NP when compared with control mucosa (P < 0.05), whereas AP-1 expression did not differ significantly between groups. Expressions of IL-1 beta, eotaxin-2 and b-FGF were also increased in patients with NP compared with controls (P < 0.05). Conclusions The transcription factor NF-kappa B is more expressed in NP than in control mucosa. This is important in NP because NF-kappa B can induce the transcription of cytokines, chemokines and adhesion molecules, which play an important role in the inflammatory process. Moreover, transcription factors influence the response to corticosteroids, which are the basis of NP treatment. Transcription factor AP-1 does not seem to have a significant role in the pathological process.
Resumo:
Amyloid P-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappa B (NF-kappa B), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappa B activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta 1-40 (1 or 2 mu M) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappa B (1 mu M, 12 hr); both p50/p65 and p50/p50 NF-kappa B dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. AP at 1 mu M increased the expression of inhibitory protein I kappa B, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RTPCR assays. Collectively, these findings suggest that AP activates NF-kappa B by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta. (c) 2007 Wiley-Liss, Inc.
Resumo:
Reprogramming of somatic cells to pluripotency promises to boost cellular therapy. Most instances of direct reprogramming have been achieved by forced expression of defined exogenous factors using multiple viral vectors. The most used 4 transcription factors, octamer-binding transcription factor 4 (OCT4), (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and v-myc myelocytomatosis viral oncogene homolog (C-MYC), can induce pluripotency in mouse and human fibroblasts. Here, we report that forced expression of a new combination of transcription factors (T-cell leukemia/lymphoma protein 1A [TCL-1A], C-MYC, and SOX2) is sufficient to promote the reprogramming of human fibroblasts into pluripotent cells. These 3-factor pluripotent cells are similar to human embryonic stem cells in morphology, in the ability to differentiate into cells of the 3 embryonic layers, and at the level of global gene expression. Induced pluripotent human cells generated by a combination of other factors will be of great help for the understanding of reprogramming pathways. This, in turn, will allow us to better control cell-fate and apply this knowledge to cell therapy.
Resumo:
Purpose: The apoptosis of retinal neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms underlying this phenomenon remain unclear. The purpose of this study was to investigate the cellular localization and the expression of microRNA-29b (miR-29b) and its potential target PKR associated protein X (RAX), an activator of the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway, in the retina of normal and diabetic rats. Methods: Retinas were obtained from normal and diabetic rats within 35 days after streptozotocin (STZ) injection. In silico analysis indicated that RAX is a potential target of miR-29b. The cellular localization of miR-29b and RAX was assessed by in situ hybridization and immunofluorescence, respectively. The expression levels of miR-29b and RAX mRNA were evaluated by quantitative reverse transcription PCR (qRT-PCR), and the expression of RAX protein was evaluated by western blot. A luciferase reporter assay and inhibition of endogenous RAX were performed to confirm whether RAX is a direct target of miR-29b as predicted by the in silico analysis. Results: We found that miR-29b and RAX are localized in the retinal ganglion cells (RGCs) and the cells of the inner nuclear layer (INL) of the retinas from normal and diabetic rats. Thus, the expression of miR-29b and RAX, as assessed in the retina by quantitative RT-PCR, reflects their expression in the RGCs and the cells of the INL. We also revealed that RAX protein is upregulated (more than twofold) at 3, 6, 16, and 22 days and downregulated (70%) at 35 days, whereas miR-29b is upregulated (more than threefold) at 28 and 35 days after STZ injection. We did not confirm the computational prediction that RAX is a direct target of miR-29b. Conclusions: Our results suggest that RAX expression may be indirectly regulated by miR-29b, and the upregulation of this miRNA at the early stage of STZ-induced diabetes may have a protective effect against the apoptosis of RGCs and cells of the INL by the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway.
Resumo:
impairment of CCAAT Enhancer Binding Protein alpha (CEBPA) function is a common finding in acute myeloid leukemia; nevertheless, its relevance for acute promyelocytic leukemia pathogenesis is unclear. We analyzed the expression and assessed the methylation status of the core and upstream promoters of CEBPA in acute promyelocytic leukemia at diagnosis. Patients with acute promyelocytic leukemia (n=18) presented lower levels of CEBPA expression compared to healthy controls (n=5), but higher levels than those in acute myeloid leukemia with t(8;21) (n=9) and with inv(16) (n=5). Regarding the core promoter, we detected no methylation in 39 acute promyelocytic leukemia samples or in 8 samples from controls. In contrast, analysis of the upstream promoter showed methylation in 37 of 39 samples, with 17 patients showing methylation levels over 30%. Our results corroborate data obtained in animal models showing that CEBPA is down-regulated in acute promyelocytic leukemia stem cells and suggest that epigenetic mechanisms may be involved.
Resumo:
Conventional vaccines to prevent the pneumonia caused by Rhodococcus equi have not been successful. We have recently demonstrated that immunization with Salmonella enterica Typhimurium expressing the VapA antigen protects mice against R. equi infection. We now report that oral vaccination of mice with this recombinant strain results in high and persistent fecal levels of antigen-specific IgA, and specific proliferation of the spleen cells of immunized mice in response to the in vitro stimulation with R. equi antigen. After in vitro stimulation, spleen cells of immunized mice produce high levels of Th1 cytokines and show a prominent mRNA expression of the Th1 transcription factor T-bet, in detriment of the Th2 transcription factor GATA-3. Following R. equi challenge, a high H(2)O(2), NO, IL-12, and IFN-gamma content is detected in the organs of immunized mice. On the other hand, TNF-alpha and IL-4 levels are markedly lower in the organs of vaccinated mice, compared with the non-vaccinated ones. The IL-10 content and the mRNA transcription level of TGF-beta are also higher in the organs of immunized mice. A greater incidence of CD4(+) and CD8(+) T cells and B lymphocytes is verified in vaccinated mice. However, there is no difference between vaccinated and non-vaccinated mice in terms of the frequency of CD4(+)CD25(+)Foxp3(+) T cells. Finally, we show that the vaccination confers a long-term protection against R. equi infection. Altogether, these data indicate that the oral vaccination of mice with S. enterica Typhimurium expressing VapA induces specific and long-lasting humoral and cellular responses against the pathogen, which are appropriately regulated and allow tissue integrity after challenge.
Resumo:
P>During the lifetime of an angiosperm plant various important processes such as floral transition, specification of floral organ identity and floral determinacy, are controlled by members of the MADS domain transcription factor family. To investigate the possible non-cell-autonomous function of MADS domain proteins, we expressed GFP-tagged clones of AGAMOUS (AG), APETALA3 (AP3), PISTILLATA (PI) and SEPALLATA3 (SEP3) under the control of the MERISTEMLAYER1 promoter in Arabidopsis thaliana plants. Morphological analyses revealed that epidermal overexpression was sufficient for homeotic changes in floral organs, but that it did not result in early flowering or terminal flower phenotypes that are associated with constitutive overexpression of these proteins. Localisations of the tagged proteins in these plants were analysed with confocal laser scanning microscopy in leaf tissue, inflorescence meristems and floral meristems. We demonstrated that only AG is able to move via secondary plasmodesmata from the epidermal cell layer to the subepidermal cell layer in the floral meristem and to a lesser extent in the inflorescence meristem. To study the homeotic effects in more detail, the capacity of trafficking AG to complement the ag mutant phenotype was compared with the capacity of the non-inwards-moving AP3 protein to complement the ap3 mutant phenotype. While epidermal expression of AG gave full complementation, AP3 appeared not to be able to drive all homeotic functions from the epidermis, perhaps reflecting the difference in mobility of these proteins.
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
Objective-Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. Methods and Results-The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 mu mol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1 alpha (HIF-1 alpha) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1 alpha target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1 alpha expression. Short hairpin RNA-mediated knockdown of HIF-1 alpha attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. Conclusion-Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1 alpha. (Arterioscler Thromb Vasc Biol. 2011;31:1360-1367.)
Resumo:
The Wnt signaling pathways play a key role in cell renewal, and there are two such pathways. In patients with rheumatoid arthritis (RA), the synovial membrane expresses genes such as Wnt and Fz at higher levels than those observed in patients without RA. The Wnt proteins are glycoproteins that bind to receptors of the Fz family on the cell surface. The Wnt/Fz complex controls tissue formation during embryogenesis, as well as throughout the process of limb development and joint formation. Recent studies have suggested that this signaling pathway plays a role in the pathophysiology of RA. Greater knowledge of the role of the Writ signaling pathway in RA could improve understanding of the differences in RA clinical presentation and prognosis. Further studies should also focus on Wnt family members as molecular targets in the treatment of RA. (C) 2009 Elsevier B.V. All rights reserved