9 resultados para OVERHAUSER EFFECT EXPERIMENTS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhibitory effects of mate tea (MT), a beverage produced with leaves from Ilex paraguariensis, in vitro lipase activity and on obesity in obese mice models were examined. For the in vitro experiment, porcine and human pancreatic lipase (PL) activities were determined by measuring the rate of release of oleic acid from hydrolysis of olive oil emulsified with taurocholate, phospholipids, gum arabic, or polyvinyl alcohol. For the in vivo experiments, animals were fed with a standard diet (SD, n = 10) or high-fat diet (HFD, n = 30) for 16 weeks. After the first 8 weeks on the HFD, the animals were treated with 1 and 2 g/kg of body weight of MT. The time course of the body weight and obesity-related biochemical parameters were evaluated. The results showed that MT inhibited both porcine and human PL (half-maximal inhibitory concentration = 1.5 mg MT/ml) and induced a strong inhibition of the porcine lipase activity in the hydrolysis of substrate emulsified with taurocholate + phosphatidylcholine (PC) (83 +/- 3.8%) or PC alone (62 +/- 4.3%). MT suppressed the increases in body weight (P < 0.05) and decreased the serum triglycerides and low-density lipoprotein (LDL)-cholesterol concentrations at both doses (from 190.3 +/- 5.7 to 135.0 +/- 8.9 mg/dl, from 189.1 +/- 7.3 to 129.3 +/- 17.6 mg/dl; P < 0.05, respectively) after they had been increased by the HFD. The liver lipid content was also decreased by the diet containing MT (from 132.6 +/- 3.9 to 95.6 +/- 6.1 mg/g of tissue; P < 0.05). These results suggest that MT could be a potentially therapeutic alternative in the treatment of obesity caused by a HFD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical experiments with the Brazilian additions to the Regional Atmospheric Modeling System were performed with two nested grids (50 and 10 km horizontal resolution, respectively) with and without the effect of biomass burning for 8 different situations for 96 h integrations. Only the direct radiative effect of aerosols is considered. The results were analyzed in large areas encompassing the BR163 road (one of the main areas of deforestation in the Amazon). mainly where most of the burning takes place. The precipitation change due to the direct radiative impact of biomass burning is generally negative (i.e., there is a decrease of precipitation). However, there are a few cases with a positive impact. Two opposite forcing mechanisms were explored: (a) the thermodynamic forcing that is generally negative in the sense that the aerosol tends to stabilize the lower atmosphere and (b) the dynamic impact associated with the low level horizontal pressure gradients produced by the aerosol plumes. In order to understand the non-linear relationship between the two effects, experiments were performed with 4-fold emissions. In these cases, the dynamic effect overcomes the stabilization produced by the radiative forcing and precipitation increase is observed in comparison with the control experiment. This study suggests that. in general, the biomass burning radiative forcing decreases the precipitation. However, very large concentrations of aerosols may lead to an increase of precipitation due to the dynamical forcing associated with the horizontal pressure gradients. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mussels, stress signals such as heat, osmotic shock and hypoxia lead to the activation of the phosphorylated p38 mitogen activated protein kinase (pp38-MAPK). This stress activated protein has been efficiently used as a biomarker to several natural and anthropogenic stresses. However, what has not been tested is whether differences in gender or size can affect the response of this biomarker. The present study tested whether there was variation in the expression of pp38-MAPK in mussels Perna perna of different gender and size classes when exposed to natural stress conditions, such as air exposure. The results show that gender does not affect the expression of pp38-MAPK. However, size does have an effect, where mussels smaller than 6.5 cm displayed significantly (p < 0.05) lower levels of pp38-MAPK when compared to those larger than 7 cm. Mussels are one of the most used bioindicator species and the use of biomarkers to determine the health status of an ecosystem has been greatly increasing over the years. The present study highlights the importance of using mussels of similar size classes when performing experiments using stress-related biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence exists that both right and left hemisphere attentional mechanisms are mobilized when attention is directed to the right visual hemifield and only right hemisphere attentional mechanisms are mobilized when attention is directed to the left visual hemifield. This arrangement might lead to a rightward bias of automatic attention. The hypothesis was investigated by testing male volunteers, wherein a ""location discrimination"" reaction time task (Experiments 1 and 3) and a ""location and shape discrimination"" reaction time task (Experiments 2 and 4) were used. Unilateral (Experiments 1 and 2) and unilateral or bilateral (Experiments 3 and 4) peripheral visual prime stimuli were used to control attention. Reaction time to a small visual target stimulus in the same location or in the horizontally opposite location was evaluated. Stimulus onset asynchronies (SOAs) were 34, 50, 67, 83 and 100 ms. An important prime stimulus attentional effect was observed as early as 50 ms in the four experiments. In Experiments 2, 3 and 4, this effect was larger when the prime stimulus occurred in the right hemifield than when it occurred in the left hemifield for SOA 100 ms. In Experiment 4, when the prime stimulus occurred simultaneously in both hemifields, reaction time was faster for the right hemifield and for SOA 100 ms. These results indicate that automatic attention tends to favor the right side of space, particularly when identification of the target stimulus shape is required. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and elastic and quasi-elastic neutron scattering techniques were used to investigate the high-pressure-induced changes on interactions, the low-resolution structure and the dynamics of lysozyme in solution. SAXS data, analysed using a global-fit procedure based on a new approach for hydrated protein form factor description, indicate that lysozyme completely maintains its globular structure up to 1500 bar, but significant modi. cations in the protein-protein interaction potential occur at approximately 600-1000 bar. Moreover, the mass density of the protein hydration water shows a clear discontinuity within this pressure range. Neutron scattering experiments indicate that the global and the local lysozyme dynamics change at a similar threshold pressure. A clear evolution of the internal protein dynamics from diffusing to more localized motions has also been probed. Protein structure and dynamics results have then been discussed in the context of protein-water interface and hydration water dynamics. According to SAXS results, the new configuration of water in the first hydration layer induced by pressure is suggested to be at the origin of the observed local mobility changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO(2)-Ta(2)O(5) chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (Con Cap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of cis-[RuCl(2)(P-P)(N-N)] type complexes (P-P = 1,4-bis(diphenylphosphino)butane or (1,1`-diphenylphosphino)ferrocene; N-N = 2,2`-bipyridine or 1,10-phenantroline) with monodentate ligands (L), such as 4-methylpyridine, 4-phenylpyridine and benzonitrile forms [RuCl(L)(P-P)(N-N)](+) species Upon characterization of the isolated compounds by elemental analysis, (31)P{(1)H} NMR and X-ray crystallography it was found out that the type of the L ligand determines its position in relation to the phosphorus atom. While pyridine derivatives like 4-methylpyridine and 4-phenylpyridine coordinate trans to the phosphorus atom, the benzonitrile ligand (bzCN), a good pi acceptor, coordinates trans to the nitrogen atom. A (31)P{(1)H} NMR experiment following the reaction of the precursor cis-[RuCl(2)(dppb)(phen)] with the benzonitrile ligand shows that the final position of the entering ligand in the complex is better defined as a consequence of the competitive effect between the phosphorus atom and the cyano-group from the benzonitrile moiety and not by the trans effect. In this case, the benzonitrile group is stabilized trans to one of the nitrogen atoms of the N-N ligand. A differential pulse voltammetry experiment confirms this statement. In both experiments the [RuCl(bzCN)(dppb)(phen)]PF(6) species with the bzCN ligand positioned trans to a phosphorus atom of the dppb ligand was detected as an intermediate complex. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoset phenolic composites reinforced with sisal fibers were prepared to optimize the cure step. In the present study, processing parameters such as pressure, temperature, and time interval were varied to control the vaporization of the water generated as a byproduct during the crosslinking reaction. These molecules can vaporize forming voids, which in turn affect the final material properties. The set of results on impact strength revealed that the application of higher pressure before the gel point of the phenolic matrix produced composites with better properties. The SEM images showed that the cure cycle corresponding to the application of higher values of molding pressure at the gel point of the phenolic resin led to the reduction of voids in the matrix. In addition, the increase in the molding pressure during the cure step increased the resin interdiffusion. Better filling of the fiber channels decreased the possibility of water molecules diffusing through the internal spaces of the fibers. These molecules then diffused mainly through the bulk of the thermoset matrix, which led to a decrease in the water diffusion coefficient (D) at all three temperatures (25, 55 and 70 degrees C) considered in the experiments. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of variations in the composition for ternary catalysts of the type Pt-x(Ru-Ir)(1-x)/C on the methanol oxidation reaction in acid media for x values of 0.25, 0.50 and 0.75 is reported. The catalysts were prepared by the sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) analyses. The nanometric character (2.8-3.2 nm) of the sol-gel deposits was demonstrated by XRD and TEM while EDX and AAS analyses showed that the metallic ratio in the compounds was very near to the expected one. Cyclic voltammograms for methanol oxidation revealed that the reaction onset occur at less positive potentials in all the ternary catalysts tested here when compared to a Pt-0.75-Ru-0.25/C (E-Tek) commercial composite. Steady-state polarization experiments (Tafel plots) showed that the Pt-0.25(Ru-Ir)(0.75)/C catalyst is the more active one for methanol oxidation as revealed by the shift of the reaction onset towards lower potentials. In addition, constant potential electrolyses suggest that the addition of Ru and Ir to Pt decreases the poisoning effect of the strongly adsorbed species generated during methanol oxidation. Consequently, the Pt-0.25 (Ru-Ir)(0.75)/C Composite catalyst is a very promising one for practical applications. (c) 2007 Elsevier B.V. All rights reserved.