81 resultados para Numerical error
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.
Resumo:
Mixing layers are present in very different types of physical situations such as atmospheric flows, aerodynamics and combustion. It is, therefore, a well researched subject, but there are aspects that require further studies. Here the instability of two-and three-dimensional perturbations in the compressible mixing layer was investigated by numerical simulations. In the numerical code, the derivatives were discretized using high-order compact finite-difference schemes. A stretching in the normal direction was implemented with both the objective of reducing the sound waves generated by the shear region and improving the resolution near the center. The compact schemes were modified to work with non-uniform grids. Numerical tests started with an analysis of the growth rate in the linear regime to verify the code implementation. Tests were also performed in the non-linear regime and it was possible to reproduce the vortex roll-up and pairing, both in two-and three-dimensional situations. Amplification rate analysis was also performed for the secondary instability of this flow. It was found that, for essentially incompressible flow, maximum growth rates occurred for a spanwise wavelength of approximately 2/3 of the streamwise spacing of the vortices. The result demonstrated the applicability of the theory developed by Pierrehumbet and Widnall. Compressibility effects were then considered and the maximum growth rates obtained for relatively high Mach numbers (typically under 0.8) were also presented.
Resumo:
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e. g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of fluctuations. These results, even though preliminary and restricted to very specific conditions, show that the physical properties of turbulence in collisionless plasmas, as those found in the ICM, may be very different from what has been largely believed.
Resumo:
Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.
Resumo:
This paper proposes an architecture for machining process and production monitoring to be applied in machine tools with open Computer numerical control (CNC). A brief description of the advantages of using open CNC for machining process and production monitoring is presented with an emphasis on the CNC architecture using a personal computer (PC)-based human-machine interface. The proposed architecture uses the CNC data and sensors to gather information about the machining process and production. It allows the development of different levels of monitoring systems with mininium investment, minimum need for sensor installation, and low intrusiveness to the process. Successful examples of the utilization of this architecture in a laboratory environment are briefly described. As a Conclusion, it is shown that a wide range of monitoring solutions can be implemented in production processes using the proposed architecture.
Resumo:
In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. (C) 2009 Optical Society of America
Resumo:
Shot peening is a cold-working mechanical process in which a shot stream is propelled against a component surface. Its purpose is to introduce compressive residual stresses on component surfaces for increasing the fatigue resistance. This process is widely applied in springs due to the cyclical loads requirements. This paper presents a numerical modelling of shot peening process using the finite element method. The results are compared with experimental measurements of the residual stresses, obtained by the X-rays diffraction technique, in leaf springs submitted to this process. Furthermore, the results are compared with empirical and numerical correlations developed by other authors.
Resumo:
Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10(-5) for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.
Resumo:
The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.
Resumo:
Context. Cluster properties can be more distinctly studied in pairs of clusters, where we expect the effects of interactions to be strong. Aims. We here discuss the properties of the double cluster Abell 1758 at a redshift z similar to 0.279. These clusters show strong evidence for merging. Methods. We analyse the optical properties of the North and South cluster of Abell 1758 based on deep imaging obtained with the Canada-France-Hawaii Telescope (CFHT) archive Megaprime/Megacam camera in the g' and r' bands, covering a total region of about 1.05 x 1.16 deg(2), or 16.1 x 17.6 Mpc(2). Our X-ray analysis is based on archive XMM-Newton images. Numerical simulations were performed using an N-body algorithm to treat the dark-matter component, a semi-analytical galaxy-formation model for the evolution of the galaxies and a grid-based hydrodynamic code with a parts per million (PPM) scheme for the dynamics of the intra-cluster medium. We computed galaxy luminosity functions (GLFs) and 2D temperature and metallicity maps of the X-ray gas, which we then compared to the results of our numerical simulations. Results. The GLFs of Abell 1758 North are well fit by Schechter functions in the g' and r' bands, but with a small excess of bright galaxies, particularly in the r' band; their faint-end slopes are similar in both bands. In contrast, the GLFs of Abell 1758 South are not well fit by Schechter functions: excesses of bright galaxies are seen in both bands; the faint-end of the GLF is not very well defined in g'. The GLF computed from our numerical simulations assuming a halo mass-luminosity relation agrees with those derived from the observations. From the X-ray analysis, the most striking features are structures in the metal distribution. We found two elongated regions of high metallicity in Abell 1758 North with two peaks towards the centre. In contrast, Abell 1758 South shows a deficit of metals in its central regions. Comparing observational results to those derived from numerical simulations, we could mimic the most prominent features present in the metallicity map and propose an explanation for the dynamical history of the cluster. We found in particular that in the metal-rich elongated regions of the North cluster, winds had been more efficient than ram-pressure stripping in transporting metal-enriched gas to the outskirts. Conclusions. We confirm the merging structure of the North and South clusters, both at optical and X-ray wavelengths.
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
We revisit the scaling properties of a model for nonequilibrium wetting [Phys. Rev. Lett. 79, 2710 (1997)], correcting previous estimates of the critical exponents and providing a complete scaling scheme. Moreover, we investigate a special point in the phase diagram, where the model exhibits a roughening transition related to directed percolation. We argue that in the vicinity of this point evaporation from the middle of plateaus can be interpreted as an external field in the language of directed percolation. This analogy allows us to compute the crossover exponent and to predict the form of the phase transition line close to its terminal point.
Resumo:
We investigate a conjecture on the cover times of planar graphs by means of large Monte Carlo simulations. The conjecture states that the cover time tau (G(N)) of a planar graph G(N) of N vertices and maximal degree d is lower bounded by tau (G(N)) >= C(d)N(lnN)(2) with C(d) = (d/4 pi) tan(pi/d), with equality holding for some geometries. We tested this conjecture on the regular honeycomb (d = 3), regular square (d = 4), regular elongated triangular (d = 5), and regular triangular (d = 6) lattices, as well as on the nonregular Union Jack lattice (d(min) = 4, d(max) = 8). Indeed, the Monte Carlo data suggest that the rigorous lower bound may hold as an equality for most of these lattices, with an interesting issue in the case of the Union Jack lattice. The data for the honeycomb lattice, however, violate the bound with the conjectured constant. The empirical probability distribution function of the cover time for the square lattice is also briefly presented, since very little is known about cover time probability distribution functions in general.
Resumo:
In this study, the innovation approach is used to estimate the measurement total error associated with power system state estimation. This is required because the power system equations are very much correlated with each other and as a consequence part of the measurements errors is masked. For that purpose an index, innovation index (II), which provides the quantity of new information a measurement contains is proposed. A critical measurement is the limit case of a measurement with low II, it has a zero II index and its error is totally masked. In other words, that measurement does not bring any innovation for the gross error test. Using the II of a measurement, the masked gross error by the state estimation is recovered; then the total gross error of that measurement is composed. Instead of the classical normalised measurement residual amplitude, the corresponding normalised composed measurement residual amplitude is used in the gross error detection and identification test, but with m degrees of freedom. The gross error processing turns out to be very simple to implement, requiring only few adaptations to the existing state estimation software. The IEEE-14 bus system is used to validate the proposed gross error detection and identification test.