152 resultados para Nuclear engineering inverse problems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Inverse analysis is currently an important subject of study in several fields of science and engineering. The identification of physical and geometric parameters using experimental measurements is required in many applications. In this work a boundary element formulation to identify boundary and interface values as well as material properties is proposed. In particular the proposed formulation is dedicated to identifying material parameters when a cohesive crack model is assumed for 2D problems. A computer code is developed and implemented using the BEM multi-region technique and regularisation methods to perform the inverse analysis. Several examples are shown to demonstrate the efficiency of the proposed model. (C) 2010 Elsevier Ltd. All rights reserved,
Resumo:
The well-known modified Garabedian-Mcfadden (MGM) method is an attractive alternative for aerodynamic inverse design, for its simplicity and effectiveness (P. Garabedian and G. Mcfadden, Design of supercritical swept wings, AIAA J. 20(3) (1982), 289-291; J.B. Malone, J. Vadyak, and L.N. Sankar, Inverse aerodynamic design method for aircraft components, J. Aircraft 24(2) (1987), 8-9; Santos, A hybrid optimization method for aerodynamic design of lifting surfaces, PhD Thesis, Georgia Institute of Technology, 1993). Owing to these characteristics, the method has been the subject of several authors over the years (G.S. Dulikravich and D.P. Baker, Aerodynamic shape inverse design using a Fourier series method, in AIAA paper 99-0185, AIAA Aerospace Sciences Meeting, Reno, NV, January 1999; D.H. Silva and L.N. Sankar, An inverse method for the design of transonic wings, in 1992 Aerospace Design Conference, No. 92-1025 in proceedings, AIAA, Irvine, CA, February 1992, 1-11; W. Bartelheimer, An Improved Integral Equation Method for the Design of Transonic Airfoils and Wings, AIAA Inc., 1995). More recently, a hybrid formulation and a multi-point algorithm were developed on the basis of the original MGM. This article discusses applications of those latest developments for airfoil and wing design. The test cases focus on wing-body aerodynamic interference and shock wave removal applications. The DLR-F6 geometry is picked as the baseline for the analysis.
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
In 2003-2004, several food items were purchased from large commercial outlets in Coimbra, Portugal. Such items included meats (chicken, pork, beef), eggs, rice, beans and vegetables (tomato, carrot, potato, cabbage, broccoli, lettuce). Elemental analysis was carried out through INAA at the Technological and Nuclear Institute (ITN, Portugal), the Nuclear Energy Centre for Agriculture (CENA, Brazil), and the Nuclear Engineering Teaching Lab of the University of Texas at Austin (NETL, USA). At the latter two, INAA was also associated to Compton suppression. It can be concluded that by applying Compton suppression (1) the detection limits for arsenic, copper and potassium improved; (2) the counting-statistics error for molybdenum diminished; and (3) the long-lived zinc had its 1115-keV photopeak better defined. In general, the improvement sought by introducing Compton suppression in foodstuff analysis was not significant. Lettuce, cabbage and chicken (liver, stomach, heart) are the richest diets in terms of human nutrients.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.
Resumo:
This paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multicriteria power engineering problems. The application of the approach conforms to the principle of guaranteed result and provides constructive lines in computationally effective obtaining harmonious solutions on the basis of solving associated maxmin problems. The presented results are universally applicable and are already being used to solve diverse classes of power engineering problems. It is illustrated by considering problems of power and energy shortage allocation, power system operation, optimization of network configuration in distribution systems, and energetically effective voltage control in distribution systems. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this work is to present an alternative boundary element method (BEM) formulation for the static analysis of three-dimensional non-homogeneous isotropic solids. These problems can be solved using the classical boundary element formulation, analyzing each subregion separately and then joining them together by introducing equilibrium and displacements compatibility. Establishing relations between the displacement fundamental solutions of the different domains, the alternative technique proposed in this paper allows analyzing all the domains as one unique solid, not requiring equilibrium or compatibility equations. This formulation also leads to a smaller system of equations when compared to the usual subregion technique, and the results obtained are even more accurate. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Leakage reduction in water supply systems and distribution networks has been an increasingly important issue in the water industry since leaks and ruptures result in major physical and economic losses. Hydraulic transient solvers can be used in the system operational diagnosis, namely for leak detection purposes, due to their capability to describe the dynamic behaviour of the systems and to provide substantial amounts of data. In this research work, the association of hydraulic transient analysis with an optimisation model, through inverse transient analysis (ITA), has been used for leak detection and its location in an experimental facility containing PVC pipes. Observed transient pressure data have been used for testing ITA. A key factor for the success of the leak detection technique used is the accurate calibration of the transient solver, namely adequate boundary conditions and the description of energy dissipation effects since PVC pipes are characterised by a viscoelastic mechanical response. Results have shown that leaks were located with an accuracy between 4-15% of the total length of the pipeline, depending on the discretisation of the system model.
Resumo:
The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.
Resumo:
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Resumo:
Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.
Resumo:
Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) copy number was diminished by prematuration in immature oocytes (718,585 +/- 34,775 vs. 595,579 +/- 31,922, respectively, control and treated groups) but was unchanged in mature oocytes (522,179 +/- 45,617 vs. 498,771 +/- 33,231) and blastocysts (816,627 +/- 40,235 vs. 765,332 +/- 51,104). To our knowledge, this is the first report of cloned offspring born to prematured oocytes, indicating that meiotic arrest could have significant implications for laboratories working with SCNT and in vitro embryo production.