8 resultados para Norton-Simon hypothesis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The matrix-tolerance hypothesis suggests that the most abundant species in the inter-habitat matrix would be less vulnerable to their habitat fragmentation. This model was tested with leaf-litter frogs in the Atlantic Forest where the fragmentation process is older and more severe than in the Amazon, where the model was first developed. Frog abundance data from the agricultural matrix, forest fragments and continuous forest localities were used. We found an expected negative correlation between the abundance of frogs in the matrix and their vulnerability to fragmentation, however, results varied with fragment size and species traits. Smaller fragments exhibited stronger matrix-vulnerability correlation than intermediate fragments, while no significant relation was observed for large fragments. Moreover, some species that avoid the matrix were not sensitive to a decrease in the patch size, and the opposite was also true, indicating significant differences with that expected from the model. Most of the species that use the matrix were forest species with aquatic larvae development, but those species do not necessarily respond to fragmentation or fragment size, and thus affect more intensively the strengthen of the expected relationship. Therefore, the main relationship expected by the matrix-tolerance hypothesis was observed in the Atlantic Forest; however we noted that the prediction of this hypothesis can be substantially affected by the size of the fragments, and by species traits. We propose that matrix-tolerance model should be broadened to become a more effective model, including other patch characteristics, particularly fragment size, and individual species traits (e. g., reproductive mode and habitat preference).
Resumo:
Goniosomatine harvestmen have strongly armed pedipalps, generally large bodies and, commonly, very long legs (sometimes more than 20 cm), and are distributed in the Brazilian Atlantic forest, from southern Bahia to Santa Catarina. Since they are conspicuous animals and individuals of some species tend to concentrate in caves (and also under rock boulders), they have been (and still are) the target of several studies, especially those focusing on reproductive and defensive behavior, population ecology, physiology, chromosomes, etc. In spite of their importance for biological studies (some species constitute important and frequently used models for these studies), the taxonomy of Goniosomatinae has faced some problems, including misidentification, a large number of undescribed species and the lack of a phylogenetic hypothesis for the relationships among its species (which would allow evolutionary studies to be made). The last taxonomic changes in the subfamily were made 60 years ago. Considering a taxonomic revision and cladistic analysis of the subfamily to be of paramount importance, the main scope of the present paper is to provide a cladistic analysis and taxonomic revision of the species of Goniosomatinae and a new arrangement of genera (and species). The main taxonomic changes are given as follows. Six genera are recognised within the subfamily: Goniosoma; the newly described genus Pyatan; the reestablished genera Serracutisoma, Heteromitobates and Mitogoniella; and Acutisoma. New generic synonyms include: Glyptogoniosoma = Goniosomella = Lyogoniosoma = Metalyogoniosoma = Xulapona = Goniosoma, Acutisomelloides = Pygosomoides = Spelaeosoma = Serracutisoma; and Acutisomella = Heteromitobates. Newly described species include: Goniosoma capixaba; G. apoain; Pyatan insperatum DaSilva, Stefanini-Jim & Gnaspini; Serracutisoma pseudovarium; S. fritzmuelleri; S. guaricana; Heteromitobates anarchus; H. harlequin; H. alienus; Mitogoniella taquara; M. unicornis; and Acutisoma coriaceum. New combinations include: Goniosoma macracanthum (Mello-Leitao, 1922); G. unicolor (Mello-Leitao, 1932); G. carum (Mello-Leitao, 1936); Serracutisoma proximum (Mello-Leitao, 1922); S. banhadoae (Soares & Soares, 1947); S. molle (Mello-Leitao, 1933); S. thalassinum (Simon, 1879); S. catarina (Machado, Pinto-da-Rocha & Ramires, 2002); S. inerme (Mello-Leitao, 1927); S. spelaeum (MelloLeitao, 1933); Heteromitobates inscriptus (Mello-Leitao, 1922); H. albiscriptus (Mello-Leitao, 1932); Mitogoniella modesta (Perty, 1833); and M. badia (Koch, 1839). Reestablished combinations include: Mitogoniella indistincta MelloLeitao, 1936 and Acutisoma longipes Roewer, 1913. New speci. c synonyms include: Acutisomella cryptoleuca = Acutisomella intermedia = Goniosoma junceum = Goniosoma patruele = Goniosoma xanthophthalmum = Metalyogoniosoma unum = Goniosoma varium, Goniosoma geniculatum = Goniosoma venustum; Goniosomella perlata = Progoniosoma minense = Goniosoma vatrax, Glyptogoniosoma perditum = Progoniosoma cruciferum = Progoniosoma tijuca = Goniosoma dentipes; Leitaoius iguapensis = Leitaoius viridifrons = Serracutisoma proximum; Acutisoma marumbicola = Acutisoma patens = Serracutisoma thalassinum; Progoniosoma tetrasetae = Serracutisoma inerme; and Acutisoma monticola = Leitaoius nitidissimus = Leitaoius xanthomus = Mitogoniella mutila = Acutisoma longipes. The following species are considered species inquirenda: Goniosoma lepidum Gervais, 1844; G. monacanthum Gervais, 1844; G. obscurum Perty, 1833; G. versicolor Perty, 1833; and Mitogoniella badia (Koch, 1839). The monotpic genus Goniosomoides Mello-Leitao, 1932 (and its species, G. viridans Mello-Leitao, 1932) is removed from Goniosomatinae and considered incertae sedis.
Resumo:
The new ctenid genus Ohvida is proposed to include eight species: Ohvida fulvorufa (Franganillo, 1931) comb. nov. (type species) (=Celaetycheus cabriolatus Franganillo, 1930 syn. nov.; = C. cabriolatus pardosiformis Franganillo, 1930 syn. nov.; = C. fulvorufus afoliatus Franganillo, 1931 syn. nov.), O. isolata (Bryant, 1940) comb. nov., O. vernalis (Bryant, 1940) comb. nov., O. brevitarsus (Bryant, 1940) comb. nov., O. coxanus (Bryant, 1940), comb. nov., and three new species, O. turquino sp. nov. (all species from Cuba), and O. andros sp. nov. and O. bimini sp. nov. (both species from The Bahamas). Species of Ohvida differ from all other ctenid spiders by the presence of a retrodorsal projection on the cymbium of the male pedipalp and by a basal position of the lateral spurs on the female epigyne. The genus Celaetycheus Simon, 1897 is reviewed to only include its type species, C. flavostriatus Simon, 1897 from Brazil. We propose the following synonyms and new combinations: Ctenus ottleyi (Petrunkevitch, 1930) (= Celaetycheus strenuus Bryant, 1942 syn. nov. and C. modestus Bryant, 1942 syn. nov.); Ctenus delesserti (Caporiacco, 1947) comb. nov., and Leptoctenus paradoxus (F.O. P.-Cambridge, 1900) comb. nov. Celaetycheus modestus Bryant, 1942 is considered incertae sedis.
Resumo:
The tarantula genus Ephebopus Simon 1892 is reviewed and includes the type species, E. murinus (Walckenaer 1837), and E. uatuman Lucas, Silva & Bertani 1992, E. cyanognathus West & Marshall 2000, E. rufescens West & Marshall 2000 and Ephebopus foliatus, sp. nov., from Guyana. Ephebopus violaceus Mello-Leitao 1930 is transferred to Tapinauchenius Ausserer, where it is a senior synonym of Tapinauchenius purpureus Schmidt 1995 new synonymy. Ephebopus fossor Pocock 1903 is considered a nomen dubium. Ephebopus occurs in northeastern South America where it is known only from Brazil, Guyana, Suriname, and French Guiana. Spiders of the genus are generally fossorial; however, Ephebopus murinus has a developmental stage that is arboreal. A cladistic analysis of the Theraphosidae retrieves the Aviculariinae as monophyletic, including Avicularia Lamarck, Iridopelma Pocock 1901, Pachistopelma Pocock 1901, Tapinauchenius, Psalmopoeus Pocock, Ephebopus, Stromatopelma Karsch and Heteroscodra Pocock, having as a synapomorphy the well-developed scopulae on tarsi and metatarsi I-II that is very laterally extended.
Resumo:
The genus Magulla Simon 1892 is revalidated and redescribed. The female of the type species M. obesa Simon 1892 is redescribed and the male is described for the first time. Magulla janeirus (Keyserling 1891) is considered a valid species. Magulla symmetrica Bucherl 1949 is transferred to Plesiopelma Pocock 1901, and considered a junior synonym of P. insulare (Mello-Leitao 1923). Additionally, two new species are described from Brazil: M. buecherli n. sp. from Ilhabela, Sao Paulo and M. brescoviti n. sp. from Sao Francisco de Paula, Rio Grande do Sul.
Resumo:
Chaetopelma Ausserer 1871 and Nesiergus Simon 1903 are revised. Cratorrhagus Simon 1891 is considered a junior synonym of Chaetopelma. Cratorrhagus tetramerus (Simon 1873) and the female of Cratorrhagus concolor (Simon 1873) are conspecific with C. olivaceum (C. L. Koch 1841). Ischnocolus gracilis Ausserer 1871, Ischnocolus syriacus Ausserer 1871, Chaetopelma shabati Hassan 1950 and Ischnocolus jerusalemensis Smith 1990 are also treated here as junior synonyms of C. olivaceum. Chaetopelma adenense Simon 1890 is proposed as a junior synonym of Ischnocolus jickelii L. Koch 1875. Chaetopelma gardineri Hirst 1911 is transferred to Nesiergus. Hence, Chaetopelma comprises three valid species: C. olivaceum (C. L. Koch 1841); C. karlamani Vollmer 1997; C. concolor (Simon 1873) n. comb. from the Middle East and northeastern Africa. Nesiergus, which appears endemic to the Seychelles archipelago, now comprises three valid species: N. gardineri (Hirst 1911) n. comb.; N. halophilus Benoit 1978; N. insulanus Simon 1903.
Resumo:
In many epidemiological studies it is common to resort to regression models relating incidence of a disease and its risk factors. The main goal of this paper is to consider inference on such models with error-prone observations and variances of the measurement errors changing across observations. We suppose that the observations follow a bivariate normal distribution and the measurement errors are normally distributed. Aggregate data allow the estimation of the error variances. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators is also discussed. Test statistics are proposed for testing hypotheses of interest. Further, we implement a simple graphical device that enables an assessment of the model`s goodness of fit. Results of simulations concerning the properties of the test statistics are reported. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Trypanosoma cruzi is highly diverse genetically and has been partitioned into six discrete typing units (DTUs), recently re-named T. cruzi I-VI. Although T. cruzi reproduces predominantly by binary division, accumulating evidence indicates that particular DTUs are the result of hybridization events. Two major scenarios for the origin of the hybrid lineages have been proposed. It is accepted widely that the most heterozygous TcV and TcVI DTUs are the result of genetic exchange between TcII and TcIII strains. On the other hand, the participation of a TcI parental in the current genome structure of these hybrid strains is a matter of debate. Here, sequences of the T. cruzi-specific 195-bp satellite DNA of TcI, TcII, Tat, TcV, and TcVI strains have been used for inferring network genealogies. The resulting genealogy showed a high degree of reticulation, which is consistent with more than one event of hybridization between the Tc DTUs. The data also strongly suggest that Tat is a hybrid with two distinct sets of satellite sequences, and that genetic exchange between TcI and TcII parentals occurred within the pedigree of the TcV and TcVI DTUs. Although satellite DNAs belong to the fast-evolving portion of eukaryotic genomes, in >100 satellite units of nine T. cruzi strains we found regions that display 100% identity. No DTU-specific consensus motifs were identified, inferring species-wide conservation. (C) 2010 Elsevier B.V. All rights reserved.