19 resultados para Non alcoholic Fatty Liver
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
High fat diets are extensively associated with health complications within the spectrum of the metabolic syndrome. Some of the most prevalent of these pathologies, often observed early in the development of high-fat dietary complications, are non-alcoholic fatty liver diseases. Mitochondrial bioenergetics and redox state changes are also widely associated with alterations within the metabolic syndrome. We investigated the mitochondrial effects of a high fat diet leading to non-alcoholic fatty liver disease in mice. We found that the diet does not substantially alter respiratory rates, ADP/O ratios or membrane potentials of isolated liver mitochondria. However, H(2)O(2) release using different substrates and ATP-sensitive K(+) transport activities are increased in mitochondria from animals on high fat diets. The increase in H(2)O(2) release rates was observed with different respiratory substrates and was not altered by modulators of mitochondrial ATP-sensitive K(+) channels, indicating it was not related to an observed increase in K(+) transport. Altogether, we demonstrate that mitochondria from animals with diet-induced steatosis do not present significant bioenergetic changes, but display altered ion transport and increased oxidant generation. This is the first evidence, to our knowledge, that ATP-sensitive K(+) transport in mitochondria can be modulated by diet.
Resumo:
Steatosis is diagnosed on the basis of the macroscopic aspect of the liver evaluated by the surgeon at the time of organ extraction or by means of a frozen biopsy. In the present study, the applicability of laser-induced fluorescence (LIF) spectroscopy was investigated as a method for the diagnosis of different degrees of steatosis experimentally induced in rats. Rats received a high-lipid diet for different periods of time. The animals were divided into groups according to the degree of induced steatosis diagnosis by histology. The concentration of fat in the liver was correlated with LIF by means of the steatosis fluorescence factor (SFF). The histology classification, according to liver fat concentration was, Severe Steatosis, Moderate Steatosis, Mild Steatosis and Control (no liver steatosis). Fluorescence intensity could be directly correlated with fat content. It was possible to estimate an average of fluorescence intensity variable by means of different confidence intervals (P=95%) for each steatosis group. SFF was significantly higher in the Severe Steatosis group (P < 0.001) compared with the Moderate Steatosis, Mild Steatosis and Control groups. The various degrees of steatosis could be directly correlated with SFF. LIF spectroscopy proved to be a method capable of identifying the degree of hepatic steatosis in this animal model, and has the potential of clinical application for non-invasive evaluation of the degree of steatosis.
Resumo:
Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non-esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h-fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase-3 (GSK-3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK-3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin-stimulated phosphorylation of Akt and GSK-3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK-3 phosphorylation and glycogen content are decreased in liver and skeletal Muscles, but in the heart it remain unchanged (Akt and GSK-3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.
Resumo:
Cytokines (IL-6, IL-10, and TNF-alpha) are increased after exhaustive exercise in the retroperitoneal adipose tissue (RPAT) and mesenteric adipose tissue (MEAT). An exhaustive acute exercise protocol induces inflammation in adipose tissue that lasts 6 h after the exercise has ended. It is well-established that this protocol increases circulating plasma levels of non-esterified fatty acids (NEFAs) and lipopolysaccharides (LPS), compounds that are important in stimulating signaling via toll like receptor-4 (TLR-4) in different type cells. In the present study, we investigated the regulation of TLR-4 and DNA-binding of nuclear factor-kappa Bp65 (NF-kappa Bp65) in different depots of adipose tissue in rats after exhaustive exercise. Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6), and 6 h (E6 group, n = 6) after the exhaustive exercise, which consisted of running on a treadmill (approximately 70% V(O2max)) for 50 min and then running at an elevated rate that increased at 1 m/min, until exhaustion. The control group (C group, n = 6) was not subjected to exercise. In RPAT, TLR-4, MYD-88, and IkB alpha increased in the E2 group after exercise. MYD-88 and TRAF6 remained increased in the E6 group in comparison with the control group. DNA-binding of NF-kappa Bp65 was not altered. In MEAT, TLR-4, MYD-88, TRAF6, and DNA-binding of NF-kappa Bp65 were increased only in the E6 group. In conclusion, we have shown that increases in pro-inflammatory cytokines in adipose tissue pads after exhaustive exercise may be mediated via TLR-4 signaling, leading to increases in NF-kappa Bp65 binding to DNA in MEAT. J. Cell. Physiol. 226: 1604-1607, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Microsomal triglyceride transfer protein (MTP) is a protein that exerts a central regulatory role in very-low-density lipoprotein (VLDL) assembly and secretion. The purpose of the study was to investigate the effects of all exercise-training program oil hepatic content of MTP and its relation to hepatic VLDL-triglyceride (VLDL-TG) production in response to lipid infusion. Female rats either fed a standard (SD) or all obesity-induced high-fat (HF; 43% as energy) diet for 8 weeks were Subdivided into sedentary (Sed) and trained (Tr) groups. Exercise training consisted Of Continuous running on a motor-driven rodent treadmill 5 times/week for 8 weeks. At the end of this period, all rats in the fasted state were intravenously infused with a 20% Solution of intralipid for 3 h followed by all injection of Triton WR1339 to block lipoprotein lipase. An additional control grout) consisting of Sed rats fed the SD diet was infused with saline (0.9% NaCl). Plasma TG accumulation was thereafter measured during 90 min to estimate VLDL-TG production. Under HF diet, hepatic MTP content and plasma TG accumulation after Triton blockade (thus reflecting VLDL-TG synthesis and secretion) were not changed in Sed rats, whereas liver TG content was highly increased (similar to 90%; p<0.01). Oil the other hand, training reduced liver MTP protein content in both SD(-18%) and HF(-23%) fed rats(p<0.05). Plasma VLDL-TG accumulation was also lower (p<0.05) in Tr than in Sed rats fed the HF diet. This effect was not observed in SD fed rats. Furthermore, the exercise training-induced decrease in VLDL-TG production in HF rats was associated with a decrease in liver TG levels. It is Concluded that in addition to a reduction in liver TG content, exercise training reduces VLDL synthesis and/or secretion in HF fed rats probably via MTP regulation.
Resumo:
Mate (Ilex paraguariensis) is rich in polyphenolic compounds, which are thought to contribute to the health benefits of tea. Mate tea was administered orally to mice at a dose of 0.5, 1.0 or 2.0 g/kg for 60 d, and changes both in serum lipid concentration and fatty acid composition of liver and kidney were examined. The effects of mate tea on serum and tissue lipid peroxidation were assessed by the evaluation of thiobarbituric acid-reactive substances (TBARS). In tea-consuming mice, both MUFA (18: 1n-9) and PUFA (18: 2n-6 and 20: 4n-6) were increased (P<0.05) in the liver lipid (approximately 90 and 60%, respectively), whereas only MUFA (approximately 20%) were increased in the kidney lipid. The most altered PUFA class was n-6 PUFA, which increased by approximately 60-75 % (P<0.05). This difference in the fatty acid profile in the liver is reflected in the increased PUFA:SFA ratio. Consistent with these results, mice fed with mate tea had much lower TBARS in the liver. No differences (P>0.05) were found in the levels of serum cholesterol, HDL-cholesterol and TAG under the conditions of the present study. These results suggest that treatment with mate tea was able to protect unsaturated fatty acids from oxidation and may have selective protective effects within the body, especially on the liver.
Resumo:
Background: Photodynamic therapy is mainly used for treatment of malignant lesions, and is based on selective location of a photosensitizer in the tumor tissue, followed by light at wavelengths matching the photosensitizer absorption spectrum. In molecular oxygen presence, reactive oxygen species are generated, inducing cells to die. One of the limitations of photodynamic therapy is the variability of photosensitizer concentration observed in systemically photosensitized tissues, mainly due to differences of the tissue architecture, cell lines, and pharmacokinetics. This study aim was to demonstrate the spatial distribution of a hematoporphyrin derivative, Photogem(R), in the healthy liver tissue of Wistar rats via fluorescence spectroscopy, and to understand its implications on photodynamic response. Methods: Fifteen male Wistar rats were intravenously photosensitized with 1.5 mg/kg body weight of Photogem(R). Laser-induced fluorescence spectroscopy at 532nm-excitation was performed on ex vivo liver slices. The influence of photosensitizer surface distribution detected by fluorescence and the induced depth of necrosis were investigated in five animals. Results: Photosensitizer distribution on rat liver showed to be greatly non-homogeneous. This may affect photodynamic therapy response as shown in the results of depth of necrosis. Conclusions: As a consequence of these results, this study suggests that photosensitizer surface spatial distribution should be taken into account in photodynamic therapy dosimetry, as this will help to better predict clinical results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Hypercholesterolemic hamsters were fed for 4 wk on diets rich in saturated fatty acids and cholesterol, differing only in protein source (20%): casein (control group, HC), whole cowpea seed (HWS), and cowpea protein isolate (HPI). Hamsters fed on HWS and HPI presented significant reductions in plasma total cholesterol and non-HDL cholesterol. HPI and HC presented similar protein digestibility, which were significantly higher than that of HWS. Animals fed on HWS presented significantly higher levels of bile acids and cholesterol in feces than did the animals fed on casein or HPI diets. Histological analyses of the liver showed that HC diet resulted in steatosis widely distributed throughout the hepatic lobule, while HWS and HPI diets promoted reductions in liver steatosis. The effectiveness of HWS for modulating lipid metabolism was greater than that of HPI, as measured by plasma cholesterol reduction and liver steatosis.
Resumo:
Soybean oil can be deacidified by liquid-liquid extraction with ethanol. In the present paper, the liquid-liquid equilibria of systems composed of refined soybean oil, commercial linoleic acid, ethanol and water were investigated at 298.2 K. The experimental data set obtained from the present study (at 298.2 K) and the results of Mohsen-Nia et al. [1] (at 303.2 K) and Rodrigues et al. [2] (at 323.2 K) were correlated by applying the non-random two liquid (NRTL) model. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. Among variables, the water content of the solvent had the strongest effect on the solubility of the components. The maximum deviation and average variance between the experimental and calculated compositions were 1.60% and 0.89%, indicating that the model could accurately predict the behavior of the compounds at different temperatures and degrees of hydration. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.
Resumo:
Fatty acids have been used in marine biogeochemistry as food chain biomarkers, but in freshwater these studies are rare. In order to evaluate the fatty acid potential as biomarkers in freshwater, their profile was analyzed during vitellogenesis in two fish species, in both waterfall and reservoir environments of the Paraiba do Sul River Basin. Detrivorous Hypostomus affinis and omnivorous Geophagus brasiliensis seem to elongate and desaturate polyunsaturated fatty acids (PUFA) and transfer them to the ovaries` phospholipids. Waterfall Geophagus brasiliensis have more highly unsaturated fatty acids in the liver, but in the reservoir, accumulation mainly occurs in muscle and ovary triglycerides, suggesting trophic opportunism and a plasticity during vitellogenesis. In Hypostomus affinis, PUFA alteration occurs only in the reservoir, suggesting a high phytoplankton occurrence. Eutrophication and water speed is reflected in Hypostomus affinis ovaries by higher PUFAn3 and bacterial fatty acids. As in marine environments, analysis of mono- and polyunsaturated fatty acids during vitellogenesis can be used as a tool in food chain studies in freshwater.
Resumo:
Short chain fatty acids (SCFAs) are metabolic by products of anerobic bacteria fermentation. These fatty acids, despite being an important fuel for colonocytes, are also modulators of leukocyte function. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate, and butyrate) on function of neutrophils, and the possible mechanisms involved. Neutrophils obtained from rats by intraperitoneal lavage 4 h after injection of oyster glycogen solution (1%) were treated with non toxic concentrations of the fatty acids. After that, the following measurements were performed: phagocytosis and destruction of Candida albicans, production of ROS (O(2)(center dot-), H(2)O(2), and HOCl) and degranulation. Gene expression (p47(phox) and p22(phox)) and protein phosphorylation (p47(phox)) were analyzed by real time reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. Butyrate inhibited phagocytosis and killing of C. albicans. This SCFA also had an inhibitory effect on production of O(2)(center dot-), H(2)O(2), and HOCI by neutrophils stimulated with PMA or fMLP. This effect of butyrate was not caused by modulation of expression of NADPH oxidase subunits (p47(phox) and p22(phox)) but it was in part due to reduced levels of p47(phox) phosphorylation and an increase in the concentration of cyclic AMP. Acetate increased the production of O(2)(center dot-) and H(2)O(2), in the absence of stimuli but had no effect on phagocytosis and killing of C. albicans. Propionate had no effect on the parameters studied. These results suggest that butyrate can modulate neutrophil function, and thus could be important in inflammatory neutrophil-associated diseases. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular Mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 mu M of palmitate did rot affect cel viability but significantly reduced FA oxidation by similar to 26.5%, similar to 43.5%, similar to 50%, and similar to 47%, respectively. Interestingly, this occurred despite significant increases in AMPK (similar to 2.5-fold) and ACC (similar to 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity (similar to 38-60%). Low concentrations of palmitate (50-100 mu M) caused an increase (similar to 30%) in CPT-I activity. However, as the concentration of palmitate increased, CPT-I activity decreased by similar to 32% after exposure for 8 h to 800 mu M of palmitate. Although FA uptake was reduced (similar to 35%) in cells exposed to increasing, palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values similar to 2.3-, similar to 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 mu M palmitate, respectively. Interestingly, myotubes exposed to 400 mu M of palmitate for 1h increased basal glucose uptake and glycogen synthesis by similar to 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake (similar to 65%) and glycogen synthesis (30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA Metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs. Such as in obesity and Type 2 Diabetes.
Resumo:
The reported effects of different families of fatty acids (FA; SFA, MUFA, n-3 and n-6 PUFA) on human health and the importance of macrophage respiratory burst and cytokine release to immune defence led us to examine the influence of palmitic acid (PA), oleic acid (OA), linoleic acid, arachidonic acid, EPA and DHA on macrophage function. We determined fungicidal activity, reactive oxygen species (ROS) and cytokine production after the treatment of J774 cells with non-toxic concentrations of the FA. PA had a late and discrete stimulating effect on ROS production, which may be associated with the reduced fungicidal activity of the cells after treatment with this FA. OA presented a sustained stimulatory effect on ROS production and increased fungicidal activity of the cells, suggesting that enrichment of diets with OA may be beneficial for pathogen elimination. The effects of PUFA on ROS production were time-and dose-dependently regulated, with no evident differences between n-3 and n-6 PUFA. It was worth noting that most changes induced after stimulation of the cells with lipopolysaccharide were suppressed by the FA. The present results suggest that supplementation of the diet with specific FA, not classes of FA, might enable an improvement in host defence mechanisms or a reduction in adverse immunological reactions.