6 resultados para Nitroxides

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-(4-(N-tert-Butyl-N-aminoxylphenyl)) pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)(2)(hfac)(2) complexes with M(hfac)(2), M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (-)7 K), and for three-spin RL-M-RL exchange in the other complexes (J/k = (-)26 K, (-)3 K, (-) 6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetra-methyl-1-piperidinyloxy) and related nitroxides as antioxidants, their effects on peroxidase-mediated protein tyrosine nitration remain unexplored. This posttranslational protein modification is a biomarker of nitric oxide-derived oxidants, and, relevantly, it parallels tissue injury in animal models of inflammation and is attenuated by tempol treatment. Here, we examine tempol effects on ribonuclease (RNase) nitration mediated by myeloperoxidase (MPO), a mammalian enzyme that plays a central role in various inflammatory processes.. Some experiments were also performed with horseradish peroxidase (HRP). We show that tempol efficiently inhibits peroxidase-mediated RNase nitration. For instance, 10 mu M tempol was able to inhibit by 90% the yield of 290 mu M 3-nitrotyrosine produced from 370 mu M RNase. The effect of tempol was not completely catalytic because part of it was consumed by recombination with RNase-tyrosyl radicals. The second-order rate constant of the reaction of tempol with MPO compound I and 11 were determined by stopped-flow kinetics as 3.3 x 10(6) and 2.6 x 10(4) M-1 s(-1), respectively (pH 7.4, 25 degrees C); the corresponding HRP constants were orders of magnitude smaller. Time-dependent hydrogen peroxide and nitrite consumption and oxygen production in the incubations were quantified experimentally and modeled by kinetic simulations. The results indicate that tempol inhibits peroxidase-mediated RNase nitration mainly because of its reaction with nitrogen dioxide to produce the oxammonium cation, which, in turn, recycles back to tempol by reacting with hydrogen peroxide and superoxide radical to produce oxygen and regenerate nitrite. The implications for nitroxide antioxidant mechanisms are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and its transmembrane AT(1) receptor were selected in order to test an innovative strategy that might allow the assessment of the agonist binding site in the receptor molecule. With the use of the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) paramagnetic probe, a biologically active agonist (TOAC(1)-Ang II), as well as an inactive control (TOAC(4)-Ang II) analogs were mixed in solution with various synthesized AT(1) fragments. Comparative intermolecular interactions, as estimated by analyzing the EPR spectra of solutions, suggested the existence of an agonist binding site containing a sequence composed of portions of the N-terminal (13-17) and the third extracellular loop (266-278) fragments of the AT(1) molecule. Therefore, this combined EPR-TOAC approach shows promise as an alternative for use also in other applications related to specific intermolecular association processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) has long been known to protect experimental animals from the injury associated with oxidative and inflammatory conditions. In the latter case, a parallel decrease in tissue protein nitration levels has been observed. Protein nitration represents a shift in nitric oxide actions from physiological to pathophysiological and potentially damaging pathways involving its derived oxidants such as nitrogen dioxide and peroxynitrite. In infectious diseases, protein tyrosine nitration of tissues and cells has been taken as evidence for the involvement of nitric oxide-derived oxidants in microbicidal mechanisms. To examine whether tempol inhibits the microbicidal action of macrophages, we investigated its effects on Leishmania amazonensis infection in vitro (RAW 264.7 murine macrophages) and in vivo (C57B1/6 mice). Tempol was administered in the drinking water at 2 mM throughout the experiments and shown to reach infected footpads as the nitroxide plus the hydroxylamine derivative by EPR analysis. At the time of maximum infection (6 weeks), tempol increased footpad lesion size (120%) and parasite burden (150%). In lesion extracts, tempol decreased overall nitric oxide products and expression of inducible nitric oxide synthase to about 80% of the levels in control animals. Nitric oxide-derived products produced by radical mechanisms, such as 3-nitrotyrosine and nitrosothiol, decreased to about 40% of the levels in control mice. The results indicate that tempol worsened L. amazonensis infection by a dual mechanism involving down-regulation of iNOS expression and scavenging of nitric oxide-derived oxidants. Thus, the development of therapeutic strategies based on nitroxides should take into account the potential risk of altering host resistance to parasite infection. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a progressive inflammatory and/or demyelinating disease of the human central nervous system (CNS). Most of the knowledge about the pathogenesis of MS has been derived from murine models, such as experimental autoimmune encephalomyelitis and vital encephalomyelitis. Here, we infected female C57BL/6 mice with a neurotropic strain of the mouse hepatitis virus (MHV-59A) to evaluate whether treatment with the multifunctional antioxidant tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) affects the ensuing encephalomyelitis. In untreated animals, neurological symptoms developed quickly: 90% of infected mice died 10 days after virus inoculation and the few survivors presented neurological deficits. Treatment with tempol (24 mg/kg, ip, two doses on the first day and daily doses for 7 days plus 2 mM tempol in the drinking water ad libitum) profoundly altered the disease outcome: neurological symptoms were attenuated, mouse survival increased up to 70%, and half of the survivors behaved as normal mice. Not Surprisingly, tempol substantially preserved the integrity of the CNS, including the blood-brain barrier. Furthermore, treatment with tempol decreased CNS vital titers, macrophage and T lymphocyte infiltration, and levels of markers of inflammation, such as expression of inducible nitric oxide synthase, transcription of tumor necrosis factor-alpha and interferon-gamma, and protein nitration. The results indicate that tempol ameliorates murine viral encephalomyelitis by altering the redox status of the infectious environment that contributes to an attenuated CNS inflammatory response. overall, our study supports the development of therapeutic strategies based on nitroxides to manage neuroinflammatory diseases, including MS. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EPR spectra of 5- and 16-doxyl stearic acid nitroxide probes (5-DSA and 16-DSA, respectively) bound to bovine serum albumin (BSA) revealed that in the presence of ionic surfactants, at least, two label populations coexist in equilibrium. The rotational correlation times (tau) indicated that component I displays a more restricted mobility state, associated to the spin labels bound to the protein; the less immobilized component 2 is due to label localization in the surfactant aggregates. For both probes, the increase of surfactant concentration leads to higher motional levels of component 1 followed by a simultaneous decrease of this fraction of nitroxides and its conversion into component 2. For 10 mM cethyltrimethylammonium chloride (CTAC), the nitroxides are 100% bound to the protein, whereas at 10mM N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and sodium dodecyl sulfate (SDS) the fractions of bound nitroxides are reduced to 18% and 86%, respectively. No significant polarity changes were observed in the whole surfactant concentration range for component 1. Moreover, at higher surfactant concentration, component 2 exhibited a similar polarity as in the pure surfactant micelles. For 16-DSA the surfactant effect is different: at 10mM of HPS and CTAC the fractions of bound nitroxides are 76% and 49%, respectively, while at 10 mM SDS they are present exclusively in a micellar environment, consistent with 100% of component 2. Overall, both SDS and HPS are able to effectively displace the nitroxide probes from the protein binding sites. while CTAC seems to affect the nitroxide binding to a significantly smaller extent. (C) 2008 Elsevier B.V. All rights reserved.