2 resultados para Neurotization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: In patients with supraclavicular injuries of the brachial plexus, the suprascapular nerve (SSN) is frequently reconstructed with a sural nerve graft coapted to C5. As the C5 cross-sectional diameter exceeds the graft diameter, inadequate positioning of the graft is possible. OBJECTIVE: To identify a specific area within the C5 proximal stump that contains the SSN axons and to determine how this area could be localized by the nerve surgeon, we conducted a microanatomic study of the intraplexal topography of the SSN. METHODS: The right-sided C5 and C6 roots, the upper trunk with its divisions, and the SSN of 20 adult nonfixed cadavers were removed and fixed. The position and area occupied by the SSN fibers inside C5 were assessed and registered under magnification. RESULTS: The SSN was monofascicular in all specimens and derived its fibers mainly from C5. Small contributions from C6 were found in 12 specimens (60%). The mean transverse area of C5 occupied by SSN fibers was 28.23%. In 16 specimens (80%), the SSN fibers were localized in the ventral (mainly the rostroventral) quadrants of C5, a cross-sectional area between 9 o`clock and 3 o`clock from the surgeon`s intraoperative perspective. CONCLUSION: In reconstruction of the SSN with a sural nerve graft, coaptation should be performed in the rostroventral quadrant of C5 cross-sectional area (between 9 and 12 o`clock from the nerve surgeon`s point of view in a right-sided brachial plexus exploration). This will minimize axonal misrouting and may improve outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: A new nerve transfer technique using a healthy fascicle of the posterior cord for suprascapular nerve reconstruction is presented. This technique was used in a patient with posttraumatic brachial plexopathy resulting in upper trunk injury with proximal root stumps that were unavailable for grafting associated with multiple nerve dysfunction. CLINICAL PRESENTATION: A 45-year-old man sustained a right brachial plexus injury after a bicycle accident. Clinical evaluation and electromyography indicated upper trunk involvement. Trapezius muscle function and triceps strength were normal on physical examination. INTERVENTION: The patient underwent a combined supra- and infraclavicular approach to the brachial plexus. A neuroma-in-continuity of the upper trunk and fibrotic C5 and C6 roots were identified. Electrical stimulation of the phrenic and spinal accessory nerves produced no response. The suprascapular nerve was dissected from the upper trunk, transected, and rerouted to the infraclavicular fossa. A healthy fascicle of the posterior cord to the triceps muscle was transferred to the suprascapular nerve. At the time of the 1-year follow-up evaluation, arm abduction against gravity and external rotation reached 40 and 34 degrees, respectively. CONCLUSION: The posterior cord can be used as a source of donor fascicle to the suprascapular nerve after its infraclavicular relocation. This new intraplexal nerve transfer could be applied in patients with isolated injury of the upper trunk and concomitant lesion of the extraplexal nerve donors usually used for reinnervation of the suprascapular nerve.