52 resultados para Network model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The advantages offered by the electronic component LED (Light Emitting Diode) have resulted in a quick and extensive application of this device in the replacement of incandescent lights. In this combined application, however, the relationship between the design variables and the desired effect or result is very complex and renders it difficult to model using conventional techniques. This paper consists of the development of a technique using artificial neural networks that makes it possible to obtain the luminous intensity values of brake lights using SMD (Surface Mounted Device) LEDs from design data. This technique can be utilized to design any automotive device that uses groups of SMD LEDs. The results of industrial applications using SMD LED are presented to validate the proposed technique.
Resumo:
We consider the two-dimensional version of a drainage network model introduced ill Gangopadhyay, Roy and Sarkar (2004), and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed in Fontes, Isopi, Newman and Ravishankar (2002).
Resumo:
A new complex network model is proposed which is founded on growth, with new connections being established proportionally to the current dynamical activity of each node, which can be understood as a generalization of the Barabasi-Albert static model. By using several topological measurements, as well as optimal multivariate methods (canonical analysis and maximum likelihood decision), we show that this new model provides, among several other theoretical kinds of networks including Watts-Strogatz small-world networks, the greatest compatibility with three real-world cortical networks.
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF(2) glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of beta-PbF(2) crystallites, with the indication of incorporating reduced lead ions (Pb(+)), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored. (c) 2008 American Institute of Physics.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Susceptible-infective-removed (SIR) models are commonly used for representing the spread of contagious diseases. A SIR model can be described in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. Here, this framework is employed for investigating the consequences of applying vaccine against the propagation of a contagious infection, by considering vaccination as a game, in the sense of game theory. In this game, the players are the government and the susceptible newborns. In order to maximize their own payoffs, the government attempts to reduce the costs for combating the epidemic, and the newborns may be vaccinated only when infective individuals are found in their neighborhoods and/or the government promotes an immunization program. As a consequence of these strategies supported by cost-benefit analysis and perceived risk, numerical simulations show that the disease is not fully eliminated and the government implements quasi-periodic vaccination campaigns. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper uses a fully operational inter-regional computable general equilibrium (CGE) model implemented for the Brazilian economy, based on previous work by Haddad and Hewings, in order to assess the likely economic effects of road transportation policy changes in Brazil. Among the features embedded in this framework, modelling of external scale economies and transportation costs provides an innovative way of dealing explicitly with theoretical issues related to integrated regional systems. The model is calibrated for 109 regions. The explicit modelling of transportation costs built into the inter-regional CGE model, based on origin-destination flows, which takes into account the spatial structure of the Brazilian economy, creates the capability of integrating the inter-regional CGE model with a geo-coded transportation network model enhancing the potential of the framework in understanding the role of infrastructure on regional development. The transportation model used is the so-called Highway Development and Management, developed by the World Bank, implemented using the software TransCAD. Further extensions of the current model specification for integrating other features of transport planning in a continental industrialising country like Brazil are discussed, with the goal of building a bridge between conventional transport planning practices and the innovative use of CGE models. In order to illustrate the analytical power of the integrated system, the authors present a set of simulations, which evaluate the ex ante economic impacts of physical/qualitative changes in the Brazilian road network (for example, a highway improvement), in accordance with recent policy developments in Brazil. Rather than providing a critical evaluation of this debate, they intend to emphasise the likely structural impacts of such policies. They expect that the results will reinforce the need to better specifying spatial interactions in inter-regional CGE models.
Resumo:
The topology of real-world complex networks, such as in transportation and communication, is always changing with time. Such changes can arise not only as a natural consequence of their growth, but also due to major modi. cations in their intrinsic organization. For instance, the network of transportation routes between cities and towns ( hence locations) of a given country undergo a major change with the progressive implementation of commercial air transportation. While the locations could be originally interconnected through highways ( paths, giving rise to geographical networks), transportation between those sites progressively shifted or was complemented by air transportation, with scale free characteristics. In the present work we introduce the path-star transformation ( in its uniform and preferential versions) as a means to model such network transformations where paths give rise to stars of connectivity. It is also shown, through optimal multivariate statistical methods (i.e. canonical projections and maximum likelihood classification) that while the US highways network adheres closely to a geographical network model, its path-star transformation yields a network whose topological properties closely resembles those of the respective airport transportation network.
Resumo:
This Letter addresses the problem of modeling the highway systems of different countries by using complex networks formalism. More specifically, we compare two traditional geographical models with a modified geometrical network model where paths, rather than edges, are incorporated at each step between the origin and the destination vertices. Optimal configurations of parameters are obtained for each model and used for the comparison. The highway networks of Australia, Brazil, India, and Romania are considered and shown to be properly modeled by the modified geographical model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present work, the effects of spatial constraints on the efficiency of task execution in systems underlain by geographical complex networks are investigated, where the probability of connection decreases with the distance between the nodes. The investigation considers several configurations of the parameters defining the network connectivity, and the Barabasi-Albert network model is also considered for comparisons. The results show that the effect of connectivity is significant only for shorter tasks, the locality of connection simplied by the spatial constraints reduces efficiency, and the addition of edges can improve the efficiency of the execution, although with increasing locality of the connections the improvement is small.
Resumo:
We numerically study the dynamics of a discrete spring-block model introduced by Olami, Feder, and Christensen (OFC) to mimic earthquakes and investigate to what extent this simple model is able to reproduce the observed spatiotemporal clustering of seismicity. Following a recently proposed method to characterize such clustering by networks of recurrent events [J. Davidsen, P. Grassberger, and M. Paczuski, Geophys. Res. Lett. 33, L11304 (2006)], we find that for synthetic catalogs generated by the OFC model these networks have many nontrivial statistical properties. This includes characteristic degree distributions, very similar to what has been observed for real seismicity. There are, however, also significant differences between the OFC model and earthquake catalogs, indicating that this simple model is insufficient to account for certain aspects of the spatiotemporal clustering of seismicity.
Resumo:
There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Sznajd model (SM) has been employed with success in the last years to describe opinion propagation in a community. In particular, it has been claimed that its transient is able to reproduce some scale properties observed in data of proportional elections, in different countries, if the community structure (the network) is scale-free. In this work, we investigate the properties of the transient of a particular version of the SM, introduced by Bernardes and co-authors in 2002. We studied the behavior of the model in networks of different topologies through the time evolution of an order parameter known as interface density, and concluded that regular lattices with high dimensionality also leads to a power-law distribution of the number of candidates with v votes. Also, we show that the particular absorbing state achieved in the stationary state (or else, the winner candidate), is related to a particular feature of the model, that may not be realistic in all situations.