2 resultados para NUTRIENTS CYCLING

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We considered whether ecological restoration using high diversity of native tree species serves to restore nitrogen dynamics in the Brazilian Atlantic Forest. We measured delta(15)N and N content in green foliage and soil; vegetation N:P ratio; and soil N mineralization in a preserved natural forest and restored forests of ages 21 and 52 years. Green foliage delta(15)N values, N content, N:P ratio, inorganic N and net mineralization and nitrification rates were all higher, the older the forest. Our findings indicate that the recuperation of N cycling has not been achieved yet in the restored forests even after 52 years, but show that they are following a trajectory of development that is characterized by their N cycling intensity becoming similar to a natural mature forest of the same original forest formation. This study demonstrated that some young restored forests are more limited by N compared to mature natural forests. We document that the recuperation of N cycling in tropical forests can be achieved through ecological restoration actions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.