5 resultados para NONSTRANGE BARYONS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We extract directly (for the first time) the charmed (C = 1) and bottom (B = -1) heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exact value and definition of the heavy quark mass, to the perturbative radiative corrections and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon masses. Noticing that most of the mass-splittings are mainly controlled by the ratio kappa <(S) over bars >/<(d) over bard > of the condensate, we extract this ratio, by allowing 1 sigma deviation from the observed masses of the Xi(c.b) and of the Omega(c). We obtain: kappa = 0.74(3), which improves the existing estimates: kappa = 0.70(10) from light hadrons. Using this value, we deduce M(Omega b) = 6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4 sigma with the one from D0. Predictions of the Xi(Q)` and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 2. Predictions of the hyperfine splittings Omega(Q)* - Omega(Q) and Xi(Q)* - Xi(Q) are also given in Table 3. Starting for a general choice of the interpolating currents for the spin 1/2 baryons, our analysis favours the optimal value of the mixing angle b similar or equal to (-1/5-0) found from light and non-strange heavy baryons. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider (for the first time) the ratios of doubly heavy baryon masses (spin 3/2 over spin 1/2 and SU(3) mass-splittings) using double ratios of sum rules (DRSR), which are more accurate than the usual simple ratios often used in the literature for getting the hadron masses. In general, our results agree and compete in precision with potential model predictions. In our approach, the alpha(s) corrections induced by the anomalous dimensions of the correlators are the main sources of the Xi(QQ)*-Xi(QQ) mass-splittings, which seem to indicate a 1/M(Q) behaviour and can only allow the electromagnetic decay Xi(QQ)* -> Xi(QQ) + gamma but not to Xi(QQ) + pi. Our results also show that the SU(3) mass-splittings are (almost) independent of the spin of the baryons and behave approximately like 1/M(Q), which could be understood from the QCD expressions of the corresponding two-point correlator. Our results can improved by including radiative corrections to the SU(3) breaking terms and can be tested, in the near future, at Tevatron and LHCb. (C) 2010 Published by Elsevier B.V.
Resumo:
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Gamma = beta H + gamma H(0), where H is the Hubble parameter and H(0) is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z(eq), the redshift of the epoch of matter - radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z(eq) approximate to 3000 and z approximate to 0) in the evolution of the Universe. The comparison of the parameter values, {beta, gamma}, determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z(eq) from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for beta = 0 this conflict is only at less than or similar to 2 sigma, it worsens as beta increases from zero.
Resumo:
A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Lambda CDM model. For a spatially flat Universe, as predicted by inflation (Omega(dm) + Omega(baryon) = 1), it is found that the effectively observed matter density parameter is Omega(meff) = 1 - alpha, where alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires alpha similar to 0.71 so that Omega(meff) similar to 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.
Resumo:
We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(s)NN = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(s)NN = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y(beam), are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.