6 resultados para NONCOMMUTATIVE RESIDUE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Can Boutet de Monvel`s algebra on a compact manifold with boundary be obtained as the algebra Psi(0)(G) of pseudodifferential operators on some Lie groupoid G? If it could, the kernel G of the principal symbol homomorphism would be isomorphic to the groupoid C*-algebra C*(G). While the answer to the above question remains open, we exhibit in this paper a groupoid G such that C*(G) possesses an ideal I isomorphic to G. In fact, we prove first that G similar or equal to Psi circle times K with the C*-algebra Psi generated by the zero order pseudodifferential operators on the boundary and the algebra K of compact operators. As both Psi circle times K and I are extensions of C(S*Y) circle times K by K (S*Y is the co-sphere bundle over the boundary) we infer from a theorem by Voiculescu that both are isomorphic.
Resumo:
We study the possibility of establishing the dual equivalence between the noncommutative supersymmetric Maxwell-Chern-Simons theory and the noncommutative supersymmetric self-dual theory. It turns to be that whereas in the commutative case the Maxwell-Chern-Simons theory can be mapped into the sum of the self-dual theory and the Chern-Simons theory, in the noncommutative case such a mapping is possible only for the theory with modified Maxwell term. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them theta-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing theta-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract theta-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as theta-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The theta-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case.
Resumo:
We consider the energy levels of a hydrogen-like atom in the framework of theta-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S(1/2), 2P(1/2) and 2P(3/2) is lifted completely, such that new transition channels are allowed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We prove a coordinatization theorem for noncommutative Jordan superalgebras of degree n > 2, describing such algebras. It is shown that the symmetrized Jordan superalgebra for a simple finite-dimensional noncommutative Jordan superalgebra of characteristic 0 and degree n > 1 is simple. Modulo a ""nodal"" case, we classify central simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0.
Resumo:
The influence of the sample matrix in the CC-electron-capture detection analysis of the pesticides dimethoate, diazinon, chlorothalonil.. parathion methyl and fenitrothion in fruits samples has been studied. Experiments have been carried out where the pesticide responses in standard solutions prepared in selected solvent were compared with their response when present in apple, mango, papaya, banana, pineapple and melon extracts. The presence of matrix effects (MEs) and their extent were shown to be simultaneously influenced by several factors (matrix concentration, matrix type, pesticide concentration, analytical range). Pronounced MEs were observed particularly for dimethoate and diazinon in all matrices tested; in lower concentrations, all pesticides presented significant ME. The other pesticides presented variable ME. Higher ME enhancement was detected at lower pesticide concentration levels of and/or at higher matrix concentration solutions. The ME detected for fenitrothion, in the analytical range evaluated, were dependent on matrix type. For each pesticide, solvent and matrix-matched calibrations were compared for all fruit samples, and it could be concluded that quantitation based on standard solutions prepared in blank matrix extract (matrix-matched calibration) should be used to compensate the MEs and to obtain more accurate results for the pesticides studied.