18 resultados para NGC 7027

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NGC 6908, an S0 galaxy situated in the direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21-cm radio synthesis observations obtained with the Giant Metrewave Radio Telescope (GMRT) and optical images and spectroscopy obtained with the Gemini-North telescope of this pair of interacting galaxies. From the radio observations, we obtained the velocity field and the H I column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high-quality photometric images and 5 angstrom resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s(-1). The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some emission lines are superimposed on a broader absorption profile, which suggests that they were not formed in NGC 6908. Finally, the H I profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disc and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4 +/- 0.6) x 10(7) yr ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present mid-infrared (mid-IR) spectra of the Compton-thick Seyfert 2 galaxy NGC 3281, obtained with the Thermal-Region Camera Spectrograph at the Gemini-South telescope. The spectra present a very deep silicate absorption at 9.7 mu m, and [S IV] 10.5 mu m and [Ne II] 12.7 mu m ionic lines, but no evidence of polycyclic aromatic hydrocarbon emission. We find that the nuclear optical extinction is in the range 24 mag <= A(V) <= 83 mag. A temperature T = 300 K was found for the blackbody dust continuum component of the unresolved 65 pc nucleus and the region at 130 pc SE, while the region at 130 pc NW reveals a colder temperature (200 K). We describe the nuclear spectrum of NGC 3281 using a clumpy torus model that suggests that the nucleus of this galaxy hosts a dusty toroidal structure. According to this model, the ratio between the inner and outer radius of the torus in NGC 3281 is R(0)/R(d) = 20, with 14 clouds in the equatorial radius with optical depth of tau(V) = 40 mag. We would be looking in the direction of the torus equatorial radius (i = 60 degrees), which has outer radius of R(0) similar to 11 pc. The column density is N(H) approximate to 1.2 x 10(24) cm(-2) and the iron K alpha equivalent width (approximate to 0.5-1.2 keV) is used to check the torus geometry. Our findings indicate that the X-ray absorbing column density, which classifies NGC 3281 as a Compton-thick source, may also be responsible for the absorption at 9.7 mu m providing strong evidence that the silicate dust responsible for this absorption can be located in the active galactic nucleus torus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first simultaneous zJHK spectroscopy on the archetypical Seyfert 2 galaxy NGC 1068 covering the wavelength region 0.9-2.4 mu m. The slit, aligned in the north-south direction and centred in the optical nucleus, maps a region 300 pc in radius at subarcsec resolution, with a spectral resolving power of 360 km s-1. This configuration allows us to study the physical properties of the nuclear gas including that of the north side of the ionization cone, map the strong excess of continuum emission in the K band and attributed to dust and study the variations, both in flux and profile, in the emission lines. Our results show the following. (1) Mid- to low-ionization emission lines are split into two components, whose relative strengths vary with the position along the slit and seem to be correlated with the jet. (2) The coronal lines are single-peaked and are detected only in the central few hundred of pc from the nucleus. (3) The absorption lines indicate the presence of intermediate age stellar population, which might be a significant contributor to the continuum in the near-IR spectra. (4) Through some simple photoionization models we find photoionization as the main mechanism powering the emitting gas. (5) Calculations using stellar features point to a mass concentration inside the 100-200 pc of about 1010 M(circle dot).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed stellar population synthesis on the nuclear and extended regions of NGC 1068 by means of near-infrared spectroscopy to disentangle their spectral energy distribution components. This is the first time that such a technique is applied to the whole 0.8-2.4 mu m wavelength interval in this galaxy. NGC 1068 is one of the nearest and probably the most studied Seyfert 2 galaxy, becoming an excellent laboratory to study the interaction between black holes, the jets that they can produce and the medium in which they propagate. Our main result is that traces of young stellar population are found at similar to 100 pc south of the nucleus. The contribution of a power-law continuum in the centre is about 25 per cent, which is expected if the light is scattered from a Seyfert 1 nucleus. We find peaks in the contribution of the featureless continuum about 100-150 pc from the nucleus on both sides. They might be associated with regions where the jet encounters dense clouds. Further support to this scenario is given by the peaks of hot dust distribution found around these same regions and the H(2) emission-line profile, leading us to propose that the peaks might be associated to regions where stars are being formed. Hot dust also has an important contribution to the nuclear region, reinforcing the idea of the presence of a dense, circumnuclear torus in this galaxy. Cold dust appears mostly in the south direction, which supports the view that the south-west emission is behind the plane of the galaxy and is extinguished very likely by dust in the plane. Intermediate-age stellar population contributes significantly to the continuum, especially in the inner 200 pc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of a sensitive Chandra X-ray observation and Spitzer mid-infrared (mid-IR) observations of the IR cluster lying north of the NGC 2071 reflection nebula in the Orion B molecular cloud. We focus on the dense cluster core known as NGC 2071-IR, which contains at least nine IR sources within a 40 `` x 40 `` region. This region shows clear signs of active star formation including powerful molecular outflows, Herbig-Haro objects, and both OH and H(2)O masers. We use Spitzer Infrared Array Camera (IRAC) images to aid in X-ray source identification and to determine young stellar object (YSO) classes using mid-IR colors. Spitzer IRAC colors show that the luminous source IRS 1 is a class I protostar. IRS 1 is believed to be driving a powerful bipolar molecular outflow and may be an embedded B-type star or its progenitor. Its X-ray spectrum reveals a fluorescent Fe emission line at 6.4 keV, arising in cold material near the protostar. The line is present even in the absence of large flares, raising questions about the nature of the ionizing mechanism responsible for producing the 6.4 keV fluorescent line. Chandra also detects X-ray sources at or near the positions of IRS 2, IRS 3, IRS 4, and IRS 6 and a variable X-ray source coincident with the radio source VLA 1, located just 2 `` north of IRS 1. No IR data are yet available to determine a YSO classification for VLA 1, but its high X-ray absorption shows that it is even more deeply embedded than IRS 1, suggesting that it could be an even younger, less-evolved protostar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive analysis of the spatial, kinematic and chemical properties of stars and globular clusters (GCs) in the `ordinary` elliptical galaxy NGC 4494 using data from the Keck and Subaru telescopes. We derive galaxy surface brightness and colour profiles out to large galactocentric radii. We compare the latter to metallicities derived using the near-infrared Calcium Triplet. We obtain stellar kinematics out to similar to 3.5 effective radii. The latter appear flattened or elongated beyond similar to 1.8 effective radii in contrast to the relatively round photometric isophotes. In fact, NGC 4494 may be a flattened galaxy, possibly even an S0, seen at an inclination of similar to 45 degrees. We publish a catalogue of 431 GC candidates brighter than i(0) = 24 based on the photometry, of which 109 are confirmed spectroscopically and 54 have measured spectroscopic metallicities. We also report the discovery of three spectroscopically confirmed ultra-compact dwarfs around NGC 4494 with measured metallicities of -0.4 less than or similar to [Fe/H] less than or similar to -0.3. Based on their properties, we conclude that they are simply bright GCs. The metal-poor GCs are found to be rotating with similar amplitude as the galaxy stars, while the metal-rich GCs show marginal rotation. We supplement our analysis with available literature data and results. Using model predictions of galaxy formation, and a suite of merger simulations, we find that many of the observational properties of NGC 4494 may be explained by formation in a relatively recent gas-rich major merger. Complete studies of individual galaxies incorporating a range of observational avenues and methods such as the one presented here will be an invaluable tool for constraining the fine details of galaxy formation models, especially at large galactocentric radii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colour-magnitude diagrams (CMDs) of the Small Magellanic Cloud (SMC) star cluster NGC 419, derived from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) data, reveal a well-delineated secondary clump located below the classical compact red clump typical of intermediate-age populations. We demonstrate that this feature belongs to the cluster itself, rather than to the underlying SMC field. Then, we use synthetic CMDs to show that it corresponds very well to the secondary clump predicted to appear as a result of He-ignition in stars just massive enough to avoid e(-)-degeneracy settling in their H-exhausted cores. The main red clump instead is made of the slightly less massive stars which passed through e(-) degeneracy and ignited He at the tip of the red giant branch. In other words, NGC 419 is the rare snapshot of a cluster while undergoing the fast transition from classical to degenerate H-exhausted cores. At this particular moment of a cluster`s life, the colour distance between the main-sequence turn-off and the red clump(s) depends sensitively on the amount of convective core overshooting, Lambda(c). By coupling measurements of this colour separation with fits to the red clump morphology, we are able to estimate simultaneously the cluster mean age (1.35(-0.04)(+0.11) Gyr) and overshooting efficiency (Lambda(c) = 0.47(-0.04)(+0.14)). Therefore, clusters like NGC 419 may constitute important marks in the age scale of intermediate-age populations. After eye inspection of other CMDs derived from HST/ACS data, we suggest that the same secondary clump may also be present in the Large Magellanic Cloud clusters NGC 1751, 1783, 1806, 1846, 1852 and 1917.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive fundamental parameters of the embedded cluster DBSB 48 in the southern nebula Hoffleit 18 and the very young open cluster Trumpler 14, by means of deep JHK(s) infrared photometry. We build colour-magnitude and colour-colour diagrams to derive reddening and age, based on main sequence and pre-main sequence distributions. Radial stellar density profiles are used to study cluster structure and guide photometric diagram extractions. Field-star decontamination is applied to uncover the intrinsic cluster sequences in the diagrams. Ages are inferred from K-excess fractions. A prominent pre-main sequence population is present in DBSB 48, and the K-excess fraction f(K) = 55 +/- 6% gives an age of 1.1 +/- 0.5 Myr. A mean reddening of A(Ks) = 0.9 +/- 0.03 was found, corresponding to A(v) = 8.2 +/- 0.3. The cluster CMD is consistent with the far kinematic distance of 5 kpc for Hoffleit 18. For Trumpler 14 we derived similar parameters as in previous studies in the optical, in particular an age of 1.7 +/- 0.7 Myr. The fraction of stars with infrared excess in Trumpler 14 is f(K) = 28 +/- 4%. Despite the young ages, both clusters are described by a King profile with core radii R-core = 0.46 +/- 0.05 pc and R-core = 0.35 +/- 0.04 pc, respectively, for DBSB 48 and Trumpler 14. Such cores are smaller than those of typical open clusters. Small cores are probably related to the cluster formation and/or parent molecular cloud fragmentation. In DBSB 48, the magnitude extent of the upper main sequence is Delta K-s approximate to 2 mag, while in Trumpler 14 it is Delta K-s approximate to 5 mag, consistent with the estimated ages. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ejection of the gas out of the disc in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper, we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence on the redistribution of the freshly delivered metals over the disc. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernova explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to similar to 2 kpc which than collapses back mostly in the form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disc remaining within a radial distance Delta R = 0.5 kpc from the place where the fountain originated. This localized circulation of disc gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular hydrogen emission is commonly observed in planetary nebulae. Images taken in infrared H(2) emission lines show that at least part of the molecular emission is produced inside the ionized region. In the best studied case, the Helix nebula, the H(2) emission is produced inside cometary knots (CKs), comet-shaped structures believed to be clumps of dense neutral gas embedded within the ionized gas. Most of the H(2) emission of the CKs seems to be produced in a thin layer between the ionized diffuse gas and the neutral material of the knot, in a mini-photodissociation region (mini-PDR). However, PDR models published so far cannot fully explain all the characteristics of the H(2) emission of the CKs. In this work, we use the photoionization code AANGABA to study the H(2) emission of the CKs, particularly that produced in the interface H(+)/H(0) of the knot, where a significant fraction of the H(2) 1-0 S(1) emission seems to be produced. Our results show that the production of molecular hydrogen in such a region may explain several characteristics of the observed emission, particularly the high excitation temperature of the H(2) infrared lines. We find that the temperature derived from H(2) observations, even of a single knot, will depend very strongly on the observed transitions, with much higher temperatures derived from excited levels. We also proposed that the separation between the H alpha and [N II] peak emission observed in the images of CKs may be an effect of the distance of the knot from the star, since for knots farther from the central star the [N II] line is produced closer to the border of the CK than H alpha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first stars that formed after the Big Bang were probably massive(1), and they provided the Universe with the first elements heavier than helium (`metals`), which were incorporated into low-mass stars that have survived to the present(2,3). Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars(4) (that is, with higher alpha-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe(4), which usually arises through nucleosynthesis in low-mass stars(5) (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude(6), which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also over-abundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars(7), whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the `first stars`.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamical processes that lead to open cluster disruption cause its mass to decrease. To investigate such processes from the observational point of view, it is important to identify open cluster remnants (OCRs), which are intrinsically poorly populated. Due to their nature, distinguishing them from field star fluctuations is still an unresolved issue. In this work, we developed a statistical diagnostic tool to distinguish poorly populated star concentrations from background field fluctuations. We use 2MASS photometry to explore one of the conditions required for a stellar group to be a physical group: to produce distinct sequences in a colour-magnitude diagram (CMD). We use automated tools to (i) derive the limiting radius; (ii) decontaminate the field and assign membership probabilities; (iii) fit isochrones; and (iv) compare object and field CMDs, considering the isochrone solution, in order to verify the similarity. If the object cannot be statistically considered as a field fluctuation, we derive its probable age, distance modulus, reddening and uncertainties in a self-consistent way. As a test, we apply the tool to open clusters and comparison fields. Finally, we study the OCR candidates DoDz 6, NGC 272, ESO 435 SC48 and ESO 325 SC15. The tool is optimized to treat these low-statistic objects and to separate the best OCR candidates for studies on kinematics and chemical composition. The study of the possible OCRs will certainly provide a deep understanding of OCR properties and constraints for theoretical models, including insights into the evolution of open clusters and dissolution rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correlation between the breaks in the metallicity distribution and the corotation radius of spiral galaxies has been already advocated in the past and is predicted by a chemodynamical model of our Galaxy that effectively introduces the role of spiral arms in the star formation rate. In this work, we present photometric and spectroscopic observations made with the Gemini Telescope for three of the best candidates of spiral galaxies to have the corotation inside the optical disc: IC 0167, NGC 1042 and NGC 6907. We observed the most intense and well-distributed H ii regions of these galaxies, deriving reliable galactocentric distances and oxygen abundances by applying different statistical methods. From these results, we confirm the presence of variations in the gradients of metallicity of these galaxies that are possibly correlated with the corotation resonance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With Two-Micron All-Sky Survey (2MASS) photometry and proper motions, Bonatto et al. suggested that FSR 1767 is a globular cluster (GC), while with J and K NTT/SOFI photometry Froebrich, Meusinger & Scholz concluded that it is not a star cluster. In this study, we combine previous and new evidence that are consistent with a GC. For instance, we show that the horizontal branch (HB) and red giant branch (RGB) stars, besides sharing a common proper motion, have radial density profiles that consistently follow the King`s law independently. Reddening maps around FSR 1767 are built using the bulge RGB as reference and also Schlegel`s extinction values to study local absorptions. Both approaches provide similar maps and show that FSR 1767 is not located in a dust window, which otherwise might have produced the stellar overdensity. Besides, neighbouring regions of similar reddening as FSR 1767 do not present the blue HB stars that are a conspicuous feature in the colour-magnitude diagram of FSR 1767. We report the presence of a compact group of stars located in the central parts of FSR 1767. It appears to be a detached post-collapse core, similar to those of other nearby low-luminosity GCs projected towards the bulge. We note that while the NTT/SOFI photometry of the star cluster FSR 1716 matches perfectly that from 2MASS, it shows a considerable offset for FSR 1767. We discuss the possible reasons why both photometries differ. We confirm our previous structural and photometric fundamental parameters for FSR 1767, which are consistent with a GC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a new spectroscopic technique for measuring radial metallicity gradients out to large galactocentric radii. We use the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck telescope and the galaxy spectrum extraction technique of Proctor et al. We also make use of the metallicity sensitive near-infrared Calcium ii triplet (CaT) features together with single stellar population models to obtain metallicities. Our technique is applied as a pilot study to a sample of three relatively nearby (< 30 Mpc) intermediate-mass to massive early-type galaxies. Results are compared with previous literature inner region values and generally show good agreement. We also include a comparison with profiles from dissipational disc-disc major merger simulations. Based on our new extended metallicity gradients combined with other observational evidence and theoretical predictions, we discuss possible formation scenarios for the galaxies in our sample. The limitations of our new technique are also discussed.