3 resultados para NATURAL-RUBBER

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The controlled release of drugs can be efficient if a suitable encapsulation procedure is developed, which requires biocompatible materials to hold and release the drug. In this study, a natural rubber latex (NRL) membrane is used to deliver metronidazole (MET), a powerful antiprotozoal agent. MET was found to be adsorbed on the NRL membrane, with little or no incorporation into the membrane bulk, according to energy dispersive X-ray spectroscopy. X-ray diffraction and FTIR spectroscopy data indicated that MET retained its structural and spectroscopic properties upon encapsulation in the NRL membrane, with no molecular-level interaction that could alter the antibacterial activity of MET. More importantly, the release time of MET in a NRL membrane in vitro was increased from the typical 6-8 h for oral tablets or injections to ca. 100 h. The kinetics of the drug release could be fitted with a double exponential function, with two characteristic times of 3.6 and 29.9 h. This is a demonstration that the induced angiogenesis known to be provided by NRL membranes can be combined with a controlled release of drugs, whose kinetics can be tailored by modifying experimental conditions of membrane fabrication for specific applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work cassava bagasse, a by-product of cassava starch industrialization was investigated as a new raw material to extract cellulose whiskers. This by-product is basically constituted of cellulose fibers (17.5 wt%) and residual starch (82 wt%). Therefore, this residue contains both natural fibers and a considerable quantity of starch and this composition suggests the possibility of using cassava bagasse to prepare both starch nanocrystals and cellulose whiskers. In this way, the preparation of cellulose whiskers was investigated employing conditions of sulfuric acid hydrolysis treatment found in the literature. The ensuing materials were characterized by transmission electron microscopy (TEM) and X-ray diffraction experiments. The results showed that high aspect ratio cellulose whiskers were successfully obtained. The reinforcing capability of cellulose whiskers extracted from cassava bagasse was investigated using natural rubber as matrix. High mechanical properties were observed from dynamic mechanical analysis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tannin-phenolic polymers prepared using tannin, a macromolecule obtained from natural sources, were used in the preparation of composites reinforced with coir fibers. The composites based on tannin-phenolic polymers (50% (w/w) of tannin as substitute of the phenol) were prepared using the coir fibers as reinforcement (30-70% (w/w), 3.0-6.0 cm, randomly distributed). The Izod impact strength of the composites showed an improvement in this property due to the incorporation of coir fibers in the tannin-phenolic matrices. The SEM images showed excellent adhesion at the fiber/matrix interface. The coir fiber had bundles regularly spaced, which enhanced the diffusion of the resin into the fiber. In addition, the high lignin content of this fiber results in a high concentration of aromatic rings, which increased the compatibility with the matrix. The values of the diffusion coefficient of water, determined using Fick`s laws, show that there was no correlation between the fiber percentage and the water diffusion. The DMTA curves showed that the storage moduli of the composites reinforced with coir fibers were considerably higher than that of the thermoset, and the increase in the proportion of fibers led to a proportional increase in the storage moduli of these materials. The biobased composites obtained have potential for non-structural applications, such as in the internal parts of automotives vehicles. To our knowledge, this is the first study on this kind of biobased composites. (C) 2010 Elsevier B.V. All rights reserved.