26 resultados para Núcleo geniculado lateral dorsal do tálamo
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Fan worms (Sabellidae) possess paired modified prostomial structures at the base of the radiolar crown, dorso-lateral to the mouth, called dorsal lips. The dorsal lips are involved in the sorting of particles collected by the radiolar crown. The range of variation in the morphology of dorsal lips is extensive, and probably this is not only due to adaptations to different environments and feeding preferences but also due to phylogenetic constraints. In this study, we describe and compare the morphology of dorsal lips in a range of sabellid taxa based on histological cross-sections of these structures, and compare our data and terminology with those of previous studies. Dorsal lips are maintained erect in most taxa by a modified radiole fused to them known as dorsal radiolar appendage. We suggest that dorsal radiolar appendages with an internal supporting axis (cellular or acellular) and probably also the ventral lips are synapomorphies of the family. J. Morphol. 272: 302-319, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Possible connections between the retina and the raphe nuclei were investigated in the monkey Cebus apella by intraocular injection of cholera toxin B subunit (CTb). CTb-positive fibers were seen in the lateral region of the dorsal raphe nucleus (DR) on the side contralateral to the injection, and a few labeled perikarya were observed in the lateral portion of the DR on the ipsilateral side. Our findings suggest that direct and reciprocal connections between the retina and DR may exist in Cebus apella. These connections might be part of an important pathway through which the light/dark cycle influences the Activity and/or functional status of raphe neurons, with potential effects on a broad set of neural and behavioral circuits. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The prefrontal cortex (PFC) receives strong inputs from monoaminergic cell groups in the brainstem and also sends projections to these nuclei. Recent evidence suggests that the PFC exerts a powerful top-down control over the dorsal raphe nucleus (DR) and that it may be involved in the actions of pharmaceutical drugs and drugs of abuse. In the light of these findings, the precise origin of prefrontal inputs to DR was presently investigated by using the cholera toxin subunit b (CTb) as retrograde tracer. All the injections placed in DR produced retrograde labeling in the medial, orbital, and lateral divisions of the PFC as well as in the medial part of the frontal polar cortex. The labeling was primarily located in layer V. Remarkably, labeling in the medial PFC was denser in its ventral part (infralimbic and ventral prelimbic cortices) than in its dorsal part (dorsal prelimbic, anterior cingulate and medial precentral cortices). After injections in the rostral or caudal DR, the largest number of labeled neurons was observed in the medial PFC, whereas after injections in the mid-rostrocaudal DR, the labeled neurons were more homogeneously distributed in the three main PFC divisions. A cluster of labeled neurons also was observed around the apex of the rostral pole of the accumbens, especially after rostral and mid-rostrocaudal DR injections. Overall, these results confirm the existence of robust preftontal projections to DR, mainly derived from the ventral part of the medial PFC, and underscore a substantial contribution of the frontal polar cortex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Aim To study osseointegration and bone-level changes at implants installed using either a standard or a reduced diameter bur for implant bed preparation. Material and methods In six Labrador dogs, the first and second premolars were extracted bilaterally. Subsequently, mesial roots of the first molars were endodontically treated and distal roots, including the corresponding part of the crown, were extracted. After 3 months of healing, flaps were elevated and recipient sites were prepared in all experimental sites. The control site was prepared using a standard procedure, while the test site was prepared using a drill with a 0.2 mm reduced diameter than the standard one used in the contra-lateral side. After 4 months of healing, the animals were euthanized and biopsies were obtained for histological processing and evaluation. Results With the exception of one implant that was lost, all implants were integrated in mineralized bone. The alveolar crest underwent resorption at control as well as at test sites (buccal aspect similar to 1 mm). The most coronal contact of bone-to-implant was located between 1.2 and 1.6 mm at the test and between 1.3 and 1.7 mm at the control sites. Bone-to-implant contact percentage was between 49% and 67%. No statistically significant differences were found for any of the outcome variables. Conclusions After 4 months of healing, lateral pressure to the implant bed as reflected by higher insertion torques (36 vs. 15 N cm in the premolar and 19 vs. 7 N cm in the molar regions) did not affect the bone-to-implant contact. To cite this article:Pantani F, Botticelli D, Garcia IR Jr., Salata LA, Borges GJ, Lang NP. Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs.Clin. Oral Impl. Res. 21, 2010; 1264-1270.doi: 10.1111/j.1600-0501.2009.01941.x.
Resumo:
Hypertension can result from neuronal network imbalance in areas of central nervous system that control blood pressure, such as the nucleus tractus solitarius (NTS). There are several neurotransmitters and neuromodulatory substances within the NTS, such as adenosine, which acts on purinoreceptors A(2a) (A(2a)R). The A(2a)R modulates neurotransmission in the NTS where its activation may induce decrease in blood pressure by different mechanisms. Nicotine is a molecule that crosses the hematoencephalic barrier and acts in several areas of central nervous system including the NTS, where it may interact with some neurotransmitter systems and contributes to the development of hypertension in subjects with genetic predisposition to this disease. In this study we first determined A(2a)R binding, protein, and mRNA expression in dorsomedial medulla oblongata of neonate normotensive (WKY) and spontaneously hypertensive rats (SHR). Subsequently, we analyzed the modulatory effects of nicotine on A(2a)R in cell culture in order to evaluate its possible involvement in the development of hypertension. Data showed a decreased A(2a)R binding and increased protein and mRNA expression in tissue sample and culture of dorsal brainstem from SHR compared with those from WKY rats at basal conditions. Moreover, nicotine modulated A(2a)R binding, protein, and mRNA expression in cells from both strains. Interestingly, nicotine decreased A(2a)R binding and increased protein levels, as well as, induced a differential modulation in A(2a)R mRNA expression. Results give us a clue about the mechanisms involved in the modulatory effects of nicotine on A(2a)R as well as hypothesize its possible contribution to the development of hypertension. In conclusion, we demonstrated that A(2a)R of SHR cells which differ from WKY and nicotine differentially modulates A(2a)R in dorsal brainstem cells of SHR and WKY.
Resumo:
A new species of Neotropical freshwater stingray, family Potamotrygonidae, is described from the Rio Nanay in the upper Rio Amazonas basin of Peru. Potamotrygon tigrina, n. sp., is easily distinguished from all congeners by its conspicuous dorsal disc coloration, composed of bright yellow to orange vermiculations strongly interwoven with a dark-brown to deep-black background. Additional features that in combination diagnose P. tigrina, n. sp., include the presence of a single angular cartilage, low and not closely grouped dorsal tail spines, and coloration of tail composed of relatively wide and alternating bands of creamy white and dark brown to black. Potamotrygon tigrina is closely related to Potamotrygon schroederi Fernandez-Yepez, 1958, which occurs in the Rio Negro (Brazil) and Rio Orinoco (Venezuela, Colombia). Both species are very similar in proportions and counts, and share features hypothesized to be derived within Potamotrygonidae, related to their specific angular cartilage morphology, distal tail color, dorsal tail-spine pattern, and ventral lateral-line system. To further substantiate the description of P. tigrina, n. sp., we provide a redescription of P. schroederi based on material from the Rio Negro (Brazil) and Rio Orinoco (Venezuela). Specimens from the two basins differ in number of vertebral centra and slightly in size and frequency of rosettes on dorsal disc, distinctions that presently do not warrant their specific separation. Potamotrygon tigrina is frequently commercialized in the international aquarium trade but virtually nothing is known of its biology or conservation status.
Resumo:
Castoraeschna corbeti sp. nov. is described and diagnosed based on four males (holotype: Brazil, Para State, Floresta Nacional cle Carajas [6 degrees 06`13.9 `` S, 50 degrees 08`13.1 `` W, ca 600 m a.s.l.], 28 ix 2007 to be deposited in Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro). This species is similar to C. longfieldae and C. coronata but can be distinguished mainly by the absence of medio-dorsal spots on S8; postero-dorsal spots on S8-9 very narrow; cerci external margin almost straight in lateral view, without a distinct angulation between stern and base of lamina; cerci apex blunt. The probable ultimate stadium larva is described based on two individuals, male and female, collected at the type locality. Adults were observed flying along margins of a small shaded second-order stream where the larvae were taken. The surrounding forest is under impact of iron ore extraction and will probably disappear in the next years.
Resumo:
The geographic variation and hemipenial morphology of Siagonodon brasiliensis are described based on a comprehensive sample, allowing the reappraisal of its generic identity, and the proposal of a new nomenclatural combination. We suggest that the presence of two supralabials, as mentioned in the original description of S. brasiliensis, is not a common feature for this species, occurring at low frequencies throughout its geographic distribution. Based on a diagnosis presented in a recently published paper, as well as on additional external traits and on hemipenial characters, we recognize Siagonodon brasiliensis as a species of the genus Tricheilostoma. In addition, a new species of worm snake of the genus Siagonodon is described from the savannas of the state of Tocantins, Brazil. The new species differs from other congeners by having a slightly acuminate snout in lateral and ventral views, subcircular rostral in dorsal view, and 12 scale rows around middle of tail. The diagnosis of the genus Siagonodon is revised and expanded based on direct observation of morphological characters.
Resumo:
In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; beta-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of beta-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (beta-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd beta-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning. Neuropsychopharmacology (2011) 36, 926-939; doi:10.1038/npp.2010.231; published online 5 January 2011
Resumo:
The dorsal premammillary nucleus (PMd) is one of the most responsive hypothalamic sites during exposure to a predator or its odor, and to a context previously associated with a predatory threat; and lesions or pharmacological inactivation centered therein severely reduced the anti-predatory defensive responses. Previous studies have shown that beta adrenergic transmission in the PMd seems critical to the expression of fear responses to predatory threats. In the present study, we have investigated the putative sources of catecholaminergic inputs to the PMd. To this end, we have first described the general pattern of catecholaminergic innervation of the PMd by examining the distribution and morphology of the tyrosine hydroxylase (TH) immunoreactive fibers in the nucleus; and next, combining Fluoro Gold (FG) tracing experiments and TH immunostaining, we determined the putative sources of catecholaminergic inputs to the nucleus. Our results revealed that the PMd presents a moderately dense plexus of catecholaminergic fibers that seems to encompass the rostral pole and ventral border of the nucleus. Combining the results of the FG tract-tracing and TH immunostaining, we observed that the locus coeruleus was the sole brain site that contained double FG and TH immunostained cells. In summary, the evidence suggests that the locus coeruleus is seemingly a part of the circuit responding to predatory threats, and, as shown by the present results, is the sole source of catecholaminergic inputs to the PMd, providing noradrenergic inputs to the nucleus, which, by acting via beta adrenoceptor, seems to be critical for the expression of anti-predatory responses. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The central actions of leptin are essential for homeostatic control of adipose tissue mass, glucose metabolism, and many autonomic and neuroendocrine systems. In the brain, leptin acts on numerous different cell types via the long-form leptin receptor (LepRb) to elicit its effects. The precise identification of leptin`s cellular targets is fundamental to understanding the mechanism of its pleiotropic central actions. We have systematically characterized LepRb distribution in the mouse brain using in situ hybridization in wildtype mice as well as by EYFP immunoreactivity in a novel LepRb-IRES-Cre EYFP reporter mouse line showing high levels of LepRb mRNA/EYFP coexpression. We found substantial LepRb mRNA and EYFP expression in hypothalamic and extrahypothalamic sites described before, including the dorsomedial nucleus of the hypothalamus, ventral premammillary nucleus, ventral tegmental area, parabrachial nucleus, and the dorsal vagal complex. Expression in insular cortex, lateral septal nucleus, medial preoptic area, rostral linear nucleus, and in the Edinger-Westphal nucleus was also observed and had been previously unreported. The LepRb-IRES-Cre reporter line was used to chemically characterize a population of leptin receptor-expressing neurons in the midbrain. Tyrosine hydroxylase and Cre reporter were found to be coexpressed in the ventral tegmental area and in other midbrain dopaminergic neurons. Lastly, the LepRbI-RES-Cre reporter line was used to map the extent of peripheral leptin sensing by central nervous system (CNS) LepRb neurons. Thus, we provide data supporting the use of the LepRb-IRES-Cre line for the assessment of the anatomic and functional characteristics of neurons expressing leptin receptor. J. Comp. Neurol. 514:518-532, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
The hypothalamus plays especially important roles in various endocrine, autonomic, and behavioral responses that guarantee the survival of both the individual and the species. In the rat, a distinct hypothalamic defensive circuit has been defined as critical for integrating predatory threats, raising an important question as to whether this concept could be applied to other prey species. To start addressing this matter, in the present study, we investigated, in another prey species (the mouse), the pattern of hypothalamic Fos immunoreactivity in response to exposure to a predator (a rat, using the Rat Exposure Test). During rat exposure, mice remained concealed in the home chamber for a longer period of time and increased freezing and risk assessment activity. We were able to show that the mouse and the rat present a similar pattern of hypothalamic activation in response to a predator. Of particular note, similar to what has been described for the rat, we observed in the mouse that predator exposure induces a striking activation in the elements of the medial hypothalamic defensive system, namely, the anterior hypothalamic nucleus, the dorsomedial part of the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus. Moreover, as described for the rat, predator-exposed mice also presented increased Fos levels in the autonomic and parvicellular parts of the paraventricular hypothalamic nucleus, lateral preoptic area and subfornical region of the lateral hypothalamic area. In conclusion, the present data give further support to the concept that a specific hypothalamic defensive circuit should be preserved across different prey species. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Traditional retinal projections target three functionally complementary systems it) the brain of mammals: the primary visual system, the visuomotor integration systems and the circadian timing system. In recent years, studies in several animals have been conducted to investigate the retinal projections to these three systems, despite some evidence of additional targets. The aim of this study was to disclose a previously unknown connection between the retina and the parabrachial complex of the common marmoset, by means of the intraocular injection of cholera toxin Subunit b. A few labeled retinal fibers/terminals that are detected in the medial parabrachial portion of the marmoset brain show clear varicosities, Suggesting terminal fields. Although the possible role of these projections remains unknown, they may provide a modulation of the cholinergic parabrachial neurons which project to the thalamic dorsal lateral geniculate nucleus. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this study we provide a comprehensive analysis of the hypothalamic activation pattern during exposure to a live predator or an environment previously associated with a predator. Our results support the view that hypothalamic processing of the actual and the contextual predatory threats share the same circuit, in which the dorsal premammillary nucleus (PMd) plays a pivotal role in amplifying this processing. To further understand the role of the PMd in the circuit organizing antipredatory defensive behaviors, we studied rats with cytotoxic PMd lesions during cat exposure and examined the pattern of behavioral responses as well as how PMd lesions affect the neuronal activation of the systems engaged in predator detection, in contextual memory formation and in defensive behavioral responses. Next, we investigated how pharmacological blockade of the PMd interferes with the conditioned behavioral responses to a context previously associated with a predator, and how this blockade affects the activation pattern of periaqueductal gray (PAG) sites likely to organize the conditioned behavioral responses to the predatory context. Behavioral observations indicate that the PMd interferes with both unconditioned and conditioned antipredatory defensive behavior. Moreover, we have shown that the PMd influences the activation of its major projecting targets, i.e. the ventral part of the anteromedial thalamic nucleus which is likely to influence mnemonic processing, and PAG sites involved in the expression of antipredatory unconditioned and conditioned behavioral responses. Of particular relevance, this work provides evidence to elucidate the basic organization of the neural circuits integrating unconditioned and contextual conditioned responses to predatory threats.