4 resultados para Mural painting and decoration, German
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Supernumerary marker chromosomes (sSMC) may or may not be associated with an abnormal phenotype, depending on the presence of euchromatin, on their chromosomal origin and whether they are inherited. Over 80% of sSMCs are derived from acrocentric chromosomes and half of them include the short arm of chromosome 15. Generally, they appear as bisatellited isodicentric marker chromosomes, most of them are symmetric. These chromosomes are normally originated de novo and are associated with mild to severe intellectual disability but not with physical abnormalities. We report on a patient with an SMC studied using classical and molecular cytogenetic procedures (G and C banding, NOR staining, painting and centromeric fluorescent in situ hybridization (FISH), BAC-FISH, and SKY). The MLPA technique and DNA polymorphic markers were used in order to identify its parental origin. The marker chromosome, monosatellited and monocentric, was found to be derived from a maternal chromosome 15 and was defined as 15pter-q21.2. This is the report of the largest de novo monosatellited 15q marker chromosome ever published presenting detailed cytogenetic and clinical data. It was associated with a phenotype including cardiac defect, absence of septum pellucidum, and dysplasia of the corpus callosum. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background Recent studies indicate an increased frequency of mutations in the gene encoding glucocerebrosidase (GBA), a deficiency of which causes Gaucher`s disease, among patients with Parkinson`s disease. We aimed to ascertain the frequency of GBA mutations in an ethnically diverse group of patients with Parkinson`s disease. Methods Sixteen centers participated in our international, collaborative study: five from the Americas, six from Europe, two from Israel, and three from Asia. Each center genotyped a standard DNA panel to permit comparison of the genotyping results across centers. Genotypes and phenotypic data from a total of 5691 patients with Parkinson`s disease (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews) were analyzed, with multivariate logistic-regression models and the Mantel-Haenszel procedure used to estimate odds ratios across centers. Results All 16 centers could detect two GBA mutations, L444P and N370S. Among Ashkenazi Jewish subjects, either mutation was found in 15% of patients and 3% of controls, and among non-Ashkenazi Jewish subjects, either mutation was found in 3% of patients and less than 1% of controls. GBA was fully sequenced for 1883 non-Ashkenazi Jewish patients, and mutations were identified in 7%, showing that limited mutation screening can miss half the mutant alleles. The odds ratio for any GBA mutation in patients versus controls was 5.43 across centers. As compared with patients who did not carry a GBA mutation, those with a GBA mutation presented earlier with the disease, were more likely to have affected relatives, and were more likely to have atypical clinical manifestations. Conclusions Data collected from 16 centers demonstrate that there is a strong association between GBA mutations and Parkinson`s disease.
Resumo:
The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and azimuthal coordinates of the location of the detector. Mapping the lateral density from the observation plane onto the intrinsic shower plane does not remove the azimuthal dependences arising from geometric and attenuation effects, in particular for inclined showers. Realistic procedures for applying correction factors are developed. Specific examples of the bias due to neglecting the azimuthal asymmetries in the conversion from the energy deposit in the Grande detectors to the lateral density of charged particles in the intrinsic shower plane are given. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The genus Eigenmannia comprises several species groups that display a surprising variety of diploid chromosome numbers and sex-determining systems. In this study, hypotheses regarding phylogenetic relationships and karyotype evolution were investigated using a combination of molecular and cytogenetic methods. Phylogenetic relationships were analyzed for 11 cytotypes based on sequences from five mitochondrial DNA regions. Parsimony-based character mapping of sex chromosomes confirms previous suggestions of multiple origins of sex chromosomes. Molecular cytogenetic analyses involved chromosome painting using probes derived from whole sex chromosomes from two taxa that were hybridized to metaphases of their respective sister cytotypes. These analyses showed that a multiple XY system evolved recently (<7 mya) by fusion. Furthermore, one of the chromosomes that fused to form the neo-Y chromosome is fused independently to another chromosome in the sister cytotype. This may constitute an efficient post-mating barrier and might imply a direct function of sex chromosomes in the speciation processes in Eigenmannia. The other chromosomal sex-determination system investigated is shown to have differentiated by an accumulation of heterochromatin on the X chromosome. This has occurred in the past 0.6 my, and is the most recent chromosomal sex-determining system described to date. These results show that the evolution of sex-determining systems can proceed very rapidly. Heredity (2011) 106, 391-400; doi:10.1038/hdy.2010.82; published online 23 June 2010