5 resultados para Municipal Budget
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The influence of the aspect ratio (building height/street canyon width) and the mean building height of cities on local energy fluxes and temperatures is studied by means of an Urban Canopy Model (UCM) coupled with a one-dimensional second-order turbulence closure model. The UCM presented is similar to the Town Energy Balance (TEB) model in most of its features but differs in a few important aspects. In particular, the street canyon walls are treated separately which leads to a different budget of radiation within the street canyon walls. The UCM has been calibrated using observations of incoming global and diffuse solar radiation, incoming long-wave radiation and air temperature at a site in So Paulo, Brazil. Sensitivity studies with various aspect ratios have been performed to assess their impact on urban temperatures and energy fluxes at the top of the canopy layer. In these simulations, it is assumed that the anthropogenic heat flux and latent heat fluxes are negligible. Results show that the simulated net radiation and sensible heat fluxes at the top of the canopy decrease and the stored heat increases as the aspect ratio increases. The simulated air temperature follows the behavior of the sensible heat flux. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the tropical town energy budget (t-TEB) scheme addressed to simulate the diurnal occurrence of the urban heat island (UHI) as observed in the Metropolitan Area of Rio de Janeiro (MARJ; -22A degrees S; -44A degrees W) in Brazil. Reasoning about the tropical urban climate have guided the scheme implementation, starting from the original equations from Masson (Bound-Lay Meteorol 94:357-397, 2000). The modifications include (a) local scaling approaches for obtaining flux-gradient relationships in the roughness sub-layer, (b) the Monin-Obukhov similarity framework in the inertial sub-layer, (c) increasing aerodynamic conductance toward more unstable conditions, and (d) a modified urban subsurface drainage system to transfer the intercepted rainwater by roofs to the roads. Simulations along 2007 for the MARJ are obtained and compared with the climatology. The t-TEB simulation is consistent with the observations, suggesting that the timing and dynamics of the UHI in tropical cities could vary significantly from the familiar patterns observed in mid-latitude cities-with the peak heat island intensity occurring in the morning than at night. The simulations are suggesting that the thermal phase shift of this tropical diurnal UHI is a response of the surface energy budget to the large amount of solar radiation, intense evapotranspiration, and thermal response of the vegetated surfaces over a very humid soil layer.
Resumo:
Apocynaceae sensun strictum from the Mucuge Municipal Park, Bahia, Brazil, including the valid publication of two names in Mandevilla Lindl. The flora of Rauvolfioideae and Apocynoideae, which together form Apocynaceae s.s., from the Mucuge Municipal Park, Chapada Diamantina, State of Bahia, Brazil, is presented. Eight species and five genera were recognized. Mandevilla is the most diverse genus, With four species: M. scabra (Hoffmans. ex Roem. & Schult.) K. Schum., M. tenuifolia (J.C. Mikan) Woodson, M. bahiensis (Woodson) M.F. Sales & Kinoshita-Gouvea, and M.microphylla (Stadelm.) M.F. Sales & Kinoshita-Gouvea, the last two are a new status and a new combination, respectively, whose names are being validly published here. The four remaining genera are each represented by one species: Couma rigida Mull. Arg., Stipecoma peltigera (Stadelm.) Mull Arg,, Temnadenia violacea (Veil.) Miers, and Himatanthus bracteatus (A. DC.) Woodson. Identification key, descriptions, comments and illustrations are presented for every species.
Resumo:
This article describes and compares three heuristics for a variant of the Steiner tree problem with revenues, which includes budget and hop constraints. First, a greedy method which obtains good approximations in short computational times is proposed. This initial solution is then improved by means of a destroy-and-repair method or a tabu search algorithm. Computational results compare the three methods in terms of accuracy and speed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work models the carbon neutralization capacity of Brazil`s ethanol program since 1975. In addition to biofuel, we also assessed the mitigation potential of other energy products, such as, bioelectricity, and CO(2) emissions captured during fermentation of sugar cane`s juice. Finally, we projected the neutralization capacity of sugar cane`s bio-energy system over the next 32 years. The balance between several carbon stocks and flows was considered in the model, including the effects of land-use change. Our results show that the neutralization of the carbon released due to land-use change was attained only in 1992, and the maximum mitigation potential of the sugar cane sector was 128 tonnes Of CO(2) per ha in 2006. An ideal reconstitution of the deployment of the sugar cane sector, including the full exploitation of bio-electricity`s potential, plus the capture Of CO(2) released during fermentation, shows that the neutralization of land-use change emissions would have been achieved in 1988, and its mitigation potential would have been 390 tCO(2)/ha. Finally, forecasts of the sector up to 2039 shows that the mitigation potential in 2039 corresponds to 836 tCO(2)/ha, which corresponds to 5.51 kg Of CO(2) per liter of ethanol produced, or 55% above the negative emission level. (C) 2009 Elsevier Ltd. All rights reserved.