6 resultados para Multimode laser beam analyzer

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)(2)), divided in groups of 15 teeth each, and analyzed on 7(th), 25(th), and 60(th) day. Group GI - only Ca(OH)(2), GIF- laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip`s area of 0.00785 cm(2), power 50 mW, application time 20 s, dose 255 J/cm(2), energy 2 J. Teeth were capped with Ca(OH)(2), Ca(OH)(2) cement and restored with amalgam. All groups presented pulp repair. On 25(th) day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60(th) day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Z-scan technique is employed to obtain the nonlinear refractive index (n (2)) of the Ca(4)REO(BO(3))(3) (RECOB, where RE = Gd and La) single crystals using 30 fs laser pulses centered at 780 nm for the two orthogonal orientations determined by the optical axes (X and Z) relative to the direction of propagation of the laser beam (k//Y// crystallographic b-axis). The large values of n (2) indicate that both GdCOB and LaCOB are potential hosts for Yb:RECOB lasers operating in the Kerr-lens mode locking (KLM) regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative spontaneous emission of a single photon from a cloud of N atoms modifies substantially the radiation pressure exerted by a far-detuned laser beam exciting the atoms. On one hand, the force induced by photon absorption depends on the collective decay rate of the excited atomic state. On the other hand, directional spontaneous emission counteracts the recoil induced by the absorption. We derive an analytical expression for the radiation pressure in steady-state. For a smooth extended atomic distribution we show that the radiation pressure depends on the atom number via cooperative scattering and that, for certain atom numbers, it can be suppressed or enhanced. Cooperative scattering of light by extended atomic clouds can become important in the presence of quasi-resonant light and could be addressed in many cold atoms experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several experiments (time-resolved Z-scan experiments based on pulsed and CW pump lasers, time-resolved divergence diagnostics) have been performed to examine and clarify the question of the converging or diverging population lensing effect occurring in a Cr(3+):Al(2)O(3) ruby laser. The dynamics of the laser far-field divergence of such a laser indeed indicated initially a diverging effect while Z-scan measurements conclude to a converging one. The origin of this discrepancy is thus analysed and elucidated here by introducing the general concept of correlation collapse between the centre and the wings of a laser beam having some clipping. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles (AuNP) incorporated into hydrotalcite (HT), provide an interesting type of pigment in which temperature can modulate the plasmon resonance and the aggregation phenomenon. As inferred from microscopy techniques, the preferential binding sites are located at the border of the HT external basal surface, leading to aggregates of gold nanoparticles displaying characteristic plasmon resonance and interference bands around 520 and 700 nm, respectively. The thermally induced color changes in the HT-supported gold material arise from the competition between of nanoparticles aggregation and fusion processes, as characterized by TEM and STM. A laser beam can also induce such changes, allowing the writing of optical information on this type of material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of an optical beam through dielectric media induces changes in the refractive index, An, which causes self-focusing or self-defocusing. In the particular case of ion-doped solids, there are thermal and non-thermal lens effects, where the latter is due to the polarizability difference, Delta alpha, between the excited and ground states, the so-called population lens (PL) effect. PL is a pure electronic contribution to the nonlinearity, while the thermal lens (TL) effect is caused by the conversion of part of the absorbed energy into heat. In time-resolved measurements such as Z-scan and TL transient experiments, it is not easy to separate these two contributions to nonlinear refractive index because they usually have similar response times. In this work, we performed time-resolved measurements using both Z-scan and mode mismatched TL in order to discriminate thermal and electronic contributions to the laser-induced refractive index change of the Nd3+-doped Strontium Barium Niobate (SrxBa1-xNb2O6) laser crystal. Combining numerical simulations with experimental results we could successfully distinguish between the two contributions to An. (C) 2007 Elsevier B.V. All rights reserved.