6 resultados para Motion in art

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radial transport in the tokamap, which has been proposed as a simple model for the motion in a stochastic plasma, is investigated. A theory for previous numerical findings is presented. The new results are stimulated by the fact that the radial diffusion coefficients is space-dependent. The space-dependence of the transport coefficient has several interesting effects which have not been elucidated so far. Among the new findings are the analytical predictions for the scaling of the mean radial displacement with time and the relation between the Fokker-Planck diffusion coefficient and the diffusion coefficient from the mean square displacement. The applicability to other systems is also discussed. (c) 2009 WILEY-VCH GmbH & Co. KGaA, Weinheim

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes an automatic device for in situ and continuous monitoring of the ageing process occurring in natural and synthetic resins widely used in art and in the conservation and restoration of cultural artefacts. The results of tests carried out under accelerated ageing conditions are also presented. This easy-to-assemble palm-top device, essentially consists of oscillators based on quartz crystal resonators coated with films of the organic materials whose response to environmental stress is to be addressed. The device contains a microcontroller which selects at pre-defined time intervals the oscillators and records and stores their oscillation frequency. The ageing of the coatings, caused by the environmental stress and resulting in a shift in the oscillation frequency of the modified crystals, can be straightforwardly monitored in this way. The kinetics of this process reflects the level of risk damage associated with a specific microenvironment. In this case, natural and artificial resins, broadly employed in art and restoration of artistic and archaeological artefacts (dammar and Paraloid B72), were applied onto the crystals. The environmental stress was represented by visible and UV radiation, since the chosen materials are known to be photochemically active, to different extents. In the case of dammar, the results obtained are consistent with previous data obtained using a bench-top equipment by impedance analysis through discrete measurements and confirm that the ageing of this material is reflected in the gravimetric response of the modified quartz crystals. As for Paraloid B72, the outcome of the assays indicates that the resin is resistant to visible light, but is very sensitive to UV irradiation. The use of a continuous monitoring system, apart from being obviously more practical, is essential to identify short-term (i.e. reversible) events, like water vapour adsorption/desorption processes, and to highlight ageing trends or sudden changes of such trends. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We here investigate the dispersion properties of radiation in the SS433 relativistic jets. We assume that the jet is composed of cold electron-proton plasma immersed in a predominantly parallel magnetic field to the jet axis. We find that for the mildly relativistic source SS433 (for which similar or equal to 79 degrees), the bulk velocity is too small (v similar or equal to 0.26c) to produce significant changes in the dispersion properties of the medium. Nonetheless, in the rarefied outer regions of the jets, where radio emission dominates, even a weak magnetic field has some influence on the dispersion properties and there appear two different electromagnetic branches that are slightly sensitive to the bulk relativistic motion. In the inner, X-ray region, the magnetic field is much stronger, but in this region the high electron density preserves the isotropic character of the local plasma and no branch separation occurs. In the region of the jet where the IR and optical emission dominates, the cold plasma may be also considered isotropic, i.e., neither the magnetic field nor the bulk velocity is able to affect the propagation of the radiation. Finally, we find that the Doppler line displacement in SS433 is affected by plasma dispersion only in a narrow frequency range in the far IR. As a consequence, although the shift (z) modulation due to precession of the SS433 jets is well described by previous work, it has to be corrected by plasma dispersion effects in the far-IR range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the paper, we discuss dynamics of two kinds of mechanical systems. Initially, we consider vibro-impact systems which have many implementations in applied mechanics, ranging from drilling machinery and metal cutting processes to gear boxes. Moreover, from the point of view of dynamical systems, vibro-impact systems exhibit a rich variety of phenomena, particularly chaotic motion. In this paper, we review recent works on the dynamics of vibro-impact systems, focusing on chaotic motion and its control. The considered systems are a gear-rattling model and a smart damper to suppress chaotic motion. Furthermore, we investigate systems with non-ideal energy source, represented by a limited power supply. As an example of a non-ideal system, we analyse chaotic dynamics of the damped Duffing oscillator coupled to a rotor. Then, we show how to use a tuned liquid damper to control the attractors of this non-ideal oscillator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,)-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly [(9,9-dioctyl- 2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These Structures were determined by wide-angle X-ray scattering (WAXS) measurements, Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of similar to 4.5 angstrom and laterally spaced by about similar to 16 angstrom, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in them aggregated Structures, Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, Our data explain many features of the temperature dependence of the photoluminescence of these two polymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To evaluate the flexural strength, microleakage, and degree of conversion of a microhybrid resin polymerized with argon laser and halogen lamp. Method and Materials: For both flexural test and degree of conversion analysis, 5 bar samples of composite resin were prepared and polymerized according to ISO 4049. The halogen light-curing unit was used with 500 MW/cm(2) for 20 seconds and the argon laser with 250 mW for 10 and 20 seconds. Samples were stored in distilled water in a dark environment at 37 degrees C for 24 hours. The flexural property was quantified by a 3-point loading test. For the microleakage evaluation, 60 bovine incisors were used to prepare standardized Class 5 cavities, which were restored and polished. Specimens were stored in distilled water for 24 hours at 37 degrees C and thermocycled 500 times (6 degrees C to 60 degrees C). Specimens were then immersed in art aqueous solution of basic fuchsin for 24 hours. Longitudinal sections of each restoration were obtained and examined with a stereomicroscope for qualitative evaluation of microleakage. Fourier transform (FT)-Raman RFS 100/S spectrometer (Bruker) was used to analyze the degree of conversion. Results: ANOVA showed no statistically significant differences of flexural strength between the photoactivation types evaluated in the flexural study. Microleakage data were statistically analyzed by Mann-Whitney and Kruskal-Wallis tests. Enamel margins resulted in a statistically lower degree of leakage than dentin margins. No statistically significant difference was found among the 3 types of photocuring studied. ANOVA also showed no statistically significant difference in the degree of conversion among the studied groups. Conclusion: According to the methodology used in this research, the argon laser is a possible alternative for photocuring, providing the same quality of polymerization as the halogen lamp. None of the photocured units tested in this study completely eliminated microleakage.