534 resultados para Monocarboxylate transporter 2
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Several plasma membrane transporters have been shown to mediate the cellular influx and/or efflux of iodothyronines, including the sodium-independent organic anion co-transporting polypeptide 1 (OATP1), the sodium taurocholate co-transporting polypeptide (NTCP), the L-type amino acid transporter 1 (LAT1) and 2 (LAT2), and the monocarboxylate transporter 8 (MCT8). The aim of this study was to investigate if the mRNAs of these transporters were expressed and regulated by thyroid hormone (TH) in mouse calvaria-derived osteoblastic MC3T3-E1 cells and in the fetal and postnatal bones of mice. Methods: The mRNA expression of the iodothyronine transporters was investigated with real-time polymerase chain reaction analysis in euthyroid and hypothyroid fetuses and litters of mice and in MC3T3-E1 cells treated with increasing doses of triiodothyronine (T(3); 10(-10) to 10(-6) M) or with 10(-8) M T(3) for 1-9 days. Results: MCT8, LAT1, and LAT2 mRNAs were detected in fetal and postnatal femurs and in MC3T3-E1 cells, while OATP1 and NTCP mRNAs were not. LAT1 and LAT2 mRNAs were not affected by TH status in vivo or in vitro or by the stage of bone development or osteoblast maturation (analyzed by the expression of osteocalcin and alkaline phosphatase, which are key markers of osteoblastic differentiation). In contrast, the femoral mRNA expression of MCT8 decreased significantly during post-natal development, whereas MCT8 mRNA expression increased as MC3T3-E1 cells differentiated. We also showed that MCT8 mRNA was up-regulated in the femur of hypothyroid animals, and that it was down-regulated by treatment with T(3) in MC3T3-E1 cells. Conclusions: This is the first study to demonstrate the mRNA expression of LAT1, LAT2, and MCT8 in the bone tissue of mice and in osteoblast-like cells. In addition, the pattern of MCT8 expression observed in vivo and in vitro suggests that MCT8 may be important to modulate TH effects on osteoblast differentiation and on bone development and metabolism.
Resumo:
The aim of the present work was to assess the role of monocarboxylate transporters (MCTs), namely MCT1 and MCT4 as well as MCT/CD147 co-expression in gastric tissues and evaluate their clinico-pathological significance in gastric carcinoma. For that, we analysed the immunohistochemical expression of MCT1, MCT4 and CD147, in a large series of gastric samples, including non-neoplastic, tumour and metastatic tissues. A significant decrease in MCT4 plasma membrane expression was observed from non-neoplastic to gastric primary malignant tissues and to lymph-node metastasis and both MCT1 and MCT4 correlated with CD147. Importantly, both MCT4 and CD147 were more frequently expressed in Lauren`s intestinal-type tumours and MCT1/CD147 co-expression was associated with advanced gastric carcinoma, Lauren`s intestinal type, TNM staging and lymph-node metastasis. Our results showed that the prognostic value of CD147 was associated with MCTI co-expression in gastric cancer cells, supporting the view that CD147 plasma membrane activity is dependent on MCT co-expression. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.
Resumo:
Tumour cells are known to be highly glycolytic, thus producing high amounts of lactic acid. Monocarboxylate transporters (MCTs), by promoting the efflux of the accumulating acids, constitute one of the most important mechanisms in the maintenance of tumour intracellular pH. Since data concerning MCT expression in colorectal carcinomas (CRC) are scarce and controversial, the present study aimed to assess the expressions of MCT1, 2, and 4 in a well characterized series of CRC and assess their role in CRC carcinogenesis. CRC samples (126 cases) were analyzed for MCT1, MCT2, and MCT4 immunoexpression and findings correlated with clinico-pathological parameters. Expression of all MCT isoforms in tumour cells was significantly increased when compared to adjacent normal epithelium. Remarkably, there was a significant gain of membrane expression for MCT1 and MCT4 and loss of plasma membrane expression for MCT2 in tumour cells. Plasma membrane expression of MCT1 was directly related to the presence of vascular invasion. This is the larger study on MCT expression in CRC and evaluates for the first time its clinico-pathological significance. The increased expression of these transporters suggests an important role in CRC, which might justify their use, especially MCT1 and MCT4, as targets in CRC drug therapy.
Resumo:
Endurance exercise is known to enhance peripheral insulin sensitivity and reduce insulin secretion. However, it is unknown whether the latter effect is due to the reduction in plasma substrate availability or alterations in beta-cell secretory machinery. Here, we tested the hypothesis that endurance exercise reduces insulin secretion by altering the intracellular energy-sensitive AMP-activated kinase (AMPK) signaling pathway. Male Wistar rats were submitted to endurance protocol training one, three, or five times per week, over 8 weeks. After that, pancreatic islets were isolated, and glucose-induced insulin secretion (GIIS), glucose transporter 2 (GLUT2) protein content, total and phosphorylated calmodulin kinase kinase (CaMKII), and AMPK levels as well as peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1 alpha) and uncoupling protein 2 (UCP2) content were measured. After 8 weeks, chronic endurance exercise reduced GIIS in a dose-response manner proportionally to weekly exercise frequency. Contrariwise, increases in GLUT2 protein content, CaMKII and AMPK phosphorylation levels were observed. These alterations were accompanied by an increase in UCP2 content, probably mediated by an enhancement in PGC-1 alpha protein expression. In conclusion, chronic endurance exercise induces adaptations in beta-cells leading to a reduction in GIIS, probably by activating the AMPK signaling pathway. Journal of Endocrinology (2011) 208, 257-264
Resumo:
We previously described the presence of nicotinamide adenine dinucleotide phosphate reduced form [NAD(P)H] oxidase components in pancreatic beta-cells and its activation by glucose, palmitic acid, and proinflammatory cytokines. In the present study, the importance of the NAD(P)H oxidase complex for pancreatic beta-cell function was examined. Rat pancreatic islets were incubated in the presence of glucose plus diphenyleneiodonium, a NAD(P)H oxidase inhibitor, for 1 h or with the antisense oligonucleotide for p47(PHOX) during 24 h. Reactive oxygen species (ROS) production was determined by a fluorescence assay using 2,7-dichlorodihydrofluorescein diacetate. Insulin secretion, intracellular calcium responses, [U-(14)C] glucose oxidation, and expression of glucose transporter-2, glucokinase and insulin genes were examined. Antisense oligonucleotide reduced p47(PHOX) expression [an important NAD(P)H oxidase cytosolic subunit] and similarly to diphenyleneiodonium also blunted the enzyme activity as indicated by reduction of ROS production. Suppression of NAD(P)H oxidase activity had an inhibitory effect on intracellular calcium responses to glucose and glucose-stimulated insulin secretion by isolated islets. NAD(P)H oxidase inhibition also reduced glucose oxidation and gene expression of glucose transporter-2 and glucokinase. These findings indicate that NAD(P)H oxidase activation plays an important role for ROS production by pancreatic beta-cells during glucose-stimulated insulin secretion. The importance of this enzyme complex for the beta-cell metabolism and the machinery involved in insulin secretion were also shown. (Endocrinology 150: 2197-2201, 2009)
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)
Resumo:
Monocarboxylate transporters (MCTs) are important cellular pH regulators in cancer cells; however, the value of MCT expression in cancer is still poorly understood. In the present study, we analysed MCT1, MCT2, and MCT4 protein expression in breast, colon, lung, and ovary neoplasms, as well as CD147 and CD44. MCT expression frequency was high and heterogeneous among the different tumours. Comparing with normal tissues, there was an increase in MCT1 and MCT4 expressions in breast carcinoma and a decrease in MCT4 plasma membrane expression in lung cancer. There were associations between CD147 and MCT1 expressions in ovarian cancer as well as between CD147 and MCT4 in both breast and lung cancers. CD44 was only associated with MCT1 plasma membrane expression in lung cancer. An important number of MCT1 positive cases are negative for both chaperones, suggesting that MCT plasma membrane expression in tumours may depend on a yet nonidentified regulatory protein.
Resumo:
Aim: Statin disposition and response are greatly determined by the activities of drug metabolizing enzymes and efflux/uptake transporters. there is little information on the regulation of these proteins in human cells after statin therapy. In this study, the effects of atorvastatin and simvastatin on mRNA expression of efflux (ABCB1, ABCG2 and ABCC2) and uptake (SLCO1B1, SLCO2B1 and SLC22A1) drug transporters in Caco-2 and HepG2 cells were investigated. Methods: Quantitative real-time PCR was used to measure mRNA levels after exposure of HepG2 and Caco-2 cells to statins. Results: Differences in mRnA basal levels of the transporters were as follows: ABCC2>ABCG2>ABCB1>SLCO1B1>>>SLC22A1>SLC O2B1 for HepG2 cells, and SLCO2B1>>ABCC2>ABCB1>ABCG2>>>SLC22A1 for Caco-2 cells. While for HepG2 cells, ABCC2, ABCG2 and SLCO2B1 mRnA levels were significantly up-regulated at 1, 10 and 20 mu mol/L after 12 or 24 h treatment, in Caco-2 cells, only the efflux transporter ABCB1 was significantly down-regulated by two-fold following a 12 h treatment with atorvastatin. Interestingly, whereas treatment with simvastatin had no effect on mRNA levels of the transporters in HepG2 cells, in Caco-2 cells the statin significantly down-regulated ABCB1, ABCC2, SLC22A1, and SLCO2B1 mRnA levels after 12 or 24 h treatment. Conclusion: These findings reveal that statins exhibits differential effects on mRNA expression of drug transporters, and this effect depends on the cell type. Furthermore, alterations in the expression levels of drug transporters in the liver and/or intestine may contribute to the variability in oral disposition of statins.
Resumo:
We evaluate osmotic and chloride (Cl(-)) regulatory capability in the diadromous shrimp Macrobrachium amazonicum, and the accompanying alterations in hemolymph osmolality and [Cl(-)], gill Na(+)/K(+)-ATPase activity, and expression of gill Na(+)/K(+)-ATPase alpha-subunit and V-ATPase B subunit mRNA during salinity (S) acclimation. We also characterize V-ATPase kinetics and the organization of transport-related membrane systems in the gill epithelium. Macrobrachium amazonicum strongly hyper-regulates hemolymph osmolality and [Cl(-)] in freshwater and in salinities up to 25 parts per thousand S. During a 10-day acclimation period to 25 parts per thousand S, hemolymph became isosmotic and hypo-chloremic after 5 days, [Cl(-)] alone remaining hyporegulated thereafter. Gill Na(+)/K(+)-ATPase alpha-subunit mRNA expression increased 6.5 times initial values after 1 h, then decreased to 3 to 4 times initial values by 24 h and to 1.5 times initial values after 10 days at 25 parts per thousand S. This increased expression was accompanied by a sharp decrease at 5 h then recovery of initial Na(+)/K(+)-ATPase activity within 24 h, declining again after 5 days, which suggests transient Cl(-) secretion. V-ATPase B-subunit mRNA expression increased 1.5-fold within 1 h, then reduced sharply to 0.3 times initial values by 5 h, and remained unchanged for the remainder of the 10-day period. V-ATPase activity dropped sharply and was negligible after a 10-day acclimation period to 21 parts per thousand S, revealing a marked downregulation of ion uptake mechanisms. The gill epithelium consists of thick, apical pillar cell flanges, the perikarya of which are coupled to an intralamellar septum. These two cell types respectively exhibit extensive apical evaginations and deep membrane invaginations, both of which are associated with numerous mitochondria, characterizing an ion transporting epithelium. These changes in Na(+)/K(+)- and V-ATPase activities and in mRNA expression during salinity acclimation appear to underpin ion uptake and Cl(-) secretion by the palaemonid shrimp gill.
Resumo:
Objective: To investigate a possible association between a 3`UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients (DSM-IV criteria) and 479 healthy controls. The primers` sequence used were: 3`UTR-Forward: 5`TGT GGT GAT GGG AAC GGC CTG AG 3` and 3`UTR-Reverse: 5`CTT CCT GGA GGT CAC GGC TCA AGG 3`. Alleles of the 3`UTR were coded according to their number of repeats: 6- repeat 320 bp (allele 6), 8- repeat 400 bp (allele 8), 9-repeat 480 bp (allele 9), 10- repeat 480 bp (allele 10), and 11- repeat 520 bp (allele 11). Results: There were no allelic (chi(2) = 2.67, 5df, p = .75) and genotypic (chi(2) = 7.20, 1df, p = .61) association between adult ADHD and VNTR 3`UTR polymorphism of SLC6A3. Conclusion: Our findings do not support SLC6A3 as marker genetic susceptibility factor in adult ADHD. More comprehensive polymorphism coverage within the SLC6A3 region should be conducted in larger samples, including comparisons in clinical subgroups, and in samples with different ethnic backgrounds. (J. of Att. Dis. 2011; 15(4) 305-309)
Resumo:
Cells produce and use peptides in distinctive ways. In the present report, using isotope labeling plus semi-quantitative mass spectrometry, we evaluated the intracellular peptide profile of TAP1/beta 2m(-/-) (transporter associated with antigen-processing 1/beta 2 microglobulin) double-knockout mice and compared it with that of C57BL/6 wild-type animals. Overall, 92 distinctive peptides were identified, and most were shown to have a similar concentration in both mouse strains. However, some peptides showed a modest increase or decrease (similar to 2-fold), whereas a glycine-rich peptide derived from the C-terminal of neurogranin (KGPGPGGPGGAGGARGGAGGGPSGD) showed a substantial increase (6-fold) in TAP1/beta 2m(-/-) mice. Thus, TAP1 and beta 2microglobulin have a small influence on the peptide profile of neuronal tissue, suggesting that the presence of peptides derived from intracellular proteins in neuronal tissue is not associated with antigens of the class I major histocompatibility complex. Therefore, it is possible that these intracellular peptides play a physiological role.
Resumo:
Posttraumatic stress disorder (PTSD) is a prevalent, disabling anxiety disorder marked by behavioral and physiologic alterations which commonly follows a chronic course. Exposure to a traumatic event constitutes a necessary, but not sufficient, factor. There is evidence from twin studies supporting a significant genetic predisposition to PTSD. However, the precise genetic loci still remain unclear. The objective of the present study was to identify, in a case-control study, whether the brain-derived neurotrophic factor (BDNF) val66met polymorphism (rs6265), the dopamine transporter (DAT1) three prime untranslated region (3`UTR) variable number of tandem repeats (VNTR), and the serotonin transporter (5-HTTPRL) short/long variants are associated with the development of PTSD in a group of victims of urban violence. All polymorphisms were genotyped in 65 PTSD patients as well as in 34 victims of violence without PTSD and in a community control group (n = 335). We did not find a statistical significant difference between the BDNF val66met and 5-HTTPRL polymorphism and the traumatic phenotype. However, a statistical association was found between DAT1 3`UTR VNTR nine repeats and PTSD (OR = 1.82; 95% CI, 1.20-2.76). This preliminary result confirms previous reports supporting a susceptibility role for allele 9 and PTSD.
Resumo:
Trichophyton rubrum is a dermatophyte responsible for the majority of human superficial mycoses. The functional expression of proteins important for the initial step and the maintenance of the infection process were identified previously in T. rubrum by subtraction suppression hybridization after growth in the presence of keratin. In this study, sequences similar to genes encoding the multidrug-resistance ATP-binding cassette (ABC) transporter, copper ATPase, the major facilitator superfamily and a permease were isolated, and used in Northern blots to monitor the expression of the genes, which were upregulated in the presence of keratin. A sequence identical to the TruMDR2 gene, encoding an ABC transporter in T rubrum, was isolated in these experiments, and examination of a T rubrum Delta TruMDR2 mutant showed a reduction in infecting activity, characterized by low growth on human nails compared with the wild-type strain. The high expression levels of transporter genes by T. rubrum in mimetic infection and the reduction in virulence of the Delta TruMDR2 mutant in a disease model in vitro suggest that transporters are involved in T. rubrum pathogenicity.
Resumo:
P>Mucoepidermoid carcinoma (MEC), the most common primary salivary malignancy, shows great variability in clinical behaviour, thus demanding investigation to identify of prognostic markers. Since Warburg`s studies, unrestricted cell growth during tumorigenesis has been linked to altered metabolism, implying hypoxic stimulation of glycolysis and diminished contribution of mitochondrial oxidative phosphorylation to cellular ATP supply. Hypothesizing that the study of MEC metabolic status could lead to the discovery of prognostic markers, we investigated by immunohistochemistry the expression of glucose transporter 1 (Glut-1), mitochondrial antigen and peroxiredoxin I (Prx I) in samples of MEC from different histological grades. Our results showed that mitochondrial antigen and Prx I were expressed in the majority of the MEC cases independent of the histological grade. In contrast Glut-1 expression increased significantly as the tumours became more aggressive. These results suggested that oxidative phosphorylation may contribute to ATP supply in all stages of MEC progression, and that the relative contribution of glycolysis over mitochondria for cellular ATP supply increases during MEC progression, favouring growth under low oxygen concentration. In addition, the observed high Prx I protein levels could provide protection to tumour cells against reactive oxygen species generated as a consequence of mitochondrial function and hypoxia-reoxygenation cycling. Altogether our findings suggest that upregulation of Glut-1 and Prx I constitute successful adaptive strategies of MEC cells conferring a growth advantage over normal salivary gland cells in the unstable oxygenation tumour environment.