13 resultados para Model Membranes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmume diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way. The mechanism of action of peptide HR1 on model membranes was investigated comparatively to other mast cell degranulating peptides (Mastoparan, Eumenitin and Anoplin) to evidence the features that modulate their selectivity. Using vesicle leakage, single-channel recordings and zeta-potential measurements, we demonstrated that HR1 preferentially binds to anionic bilayers, accumulates, folds, and at very low concentrations, is able to insert and create membrane spanning ion-selective pores. We discuss the ion selectivity character of the pores based on the neutralization or screening of the peptides charges by the bilayer head group charges or dipoles. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and dedicated step in the synthesis of triacylglycerol, which is believed to involve the lipids oleoyl coenzyme A (OCoA) and dioleoyl-sn-glycerol (DOG) as substrates. In this work we investigated the interaction of a specific peptide, referred to as SIT2, on the C-terminal of DGAT1 (HKWCIRHFYKP) with model membranes made with OCoA and DOG in Langmuir monolayers and liposomes. According to the circular dichroism and fluorescence data, conformational changes on SIT2 were seen only on liposomes containing OCoA and DOG. In Langmuir monolayers, SIT2 causes the isotherms of neat OCoA and DOG monolayers to be expanded, but has negligible effect on mixed monolayers of OCoA and DOG. This synergistic interaction between SIT2 and DOG + OCoA may be rationalized in terms of a molecular model in which SIT2 may serve as a linkage between the two lipids. Our results therefore provide molecular-level evidence for the interaction between this domain and the substrates OCoA and DOG for the synthesis of triacylglycerol. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barbaloin is a bioactive glycosilated 1,8-dihydroxyanthraquinone present in several exudates from plants, Such as Aloe vera, which are used for cosmetic or food purposes. It has been shown that barbaloin interacts with DMPG (dimyristoylphosphatidylglycerol) model membranes, altering the bilayer structure (Alves, D. S.; Perez-Fons, L.; Estepa, A.; Micol, V. Biochem. Pharm. 2004, 68, 549). Considering that ESR (electron spin resonance) of spin labels is one of the best techniques to monitor structural properties at the molecular level, the alterations caused by the anthraquinone barbaloin on phospholipid bilayers will be discussed here via the ESR signal of phospholipid spin probes intercalated into the membranes. In DMPG at high ionic strength (10 mM Hepes pH 7.4 + 100 mM NaCl), a system that presents a gel-fluid transition around 23 degrees C, 20 mol % barbaloin turns the gel phase more rigid, does not alter much the fluid phase packing, but makes the lipid thermal transition less sharp. However, in a low-salt DMPG dispersion (10 mM Hepes pH 7.4 + 2 mM NaCl), which presents a rather complex gel-fluid thermal transition (Lamy-Freund, M. T.; Riske, K. A. Chem. Phys. Lipids 2003, 122, 19), barbaloin strongly affects bilayer structural properties, both in the gel and fluid phases, extending the transition region to much higher temperature values. The position of barbaloin in DMPG bilayers will be discussed on the basis of ESR results, in parallel with data from sample viscosity, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work summarizes results obtained on membranes composed of the ternary mixture dioleoylphosphatidylglycerol (DOPG), egg sphingomyelin (eSM) and cholesterol (Chol). The membrane phase state as a function of composition is characterized from data collected with fluorescence microscopy on giant unilamellar vesicles. The results suggest that the presence of the charged DOPG significantly decreases the composition region of coexistence of liquid ordered and liquid disordered phases as compared to that in the ternary mixture of dioleoylphosphatidycholine, sphingomyelin and cholesterol. The addition of calcium chloride to DOPG:eSM:Chol vesicles, and to a lesser extent the addition of sodium chloride, leads to the stabilization of the two-phase coexistence region, which is expressed in an increase in the miscibility temperature. On the other hand, addition of the chelating agent EDTA has the opposite effect, suggesting that impurities of divalent cations in preparations of giant vesicles contribute to the stabilization of charged domains. We also explore the behavior of these membranes in the presence of extruded unilamellar vesicles made of the positively charged lipid dioleoyltrimethylammoniumpropane (DOTAP). The latter can induce domain formation in DOPG:eSM:Chol vesicles with initial composition in the one-phase region. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies involving chitosan interacting with phospholipid monolayers that mimic cell membranes have brought molecular-level evidence for some of the physiological actions of chitosan, as in removing a protein from the membrane. This interaction has been proven to be primarily of electrostatic origin because of the positive charge OF chitosan in low pH solutions, but indirect evidence has also appeared of the presence of hydrophobic interactions. In this study, we provide definitive proof that model membranes are not affected merely by the charges in the amine groups of chitosan. Such a proof was obtained by comparing surface pressure and surface potential isotherms of dipalmitoyl phosphatidyl choline (DPPC) and dipalmitoyl phosphatidyl glycerol (DPPG) monolayers incorporating either chitosan or poly(allylamine hydrochloride) (PAH). As the latter is also positively charged and With the same charged Functional group as chitosan, similar effects should be observed in case the electrical charge was the only relevant parameter. Instead, we observed a large expansion in the surface pressure isotherms upon interaction with chitosan, whereas PAH had much smaller effects. Of particular relevance for biological implications, chitosan considerably reduced the monolayer elasticity, whereas PAH had almost no effect. it is clear therefore that chitosan action depends strongly either on its functional uncharged groups and/or on its specific conformation in solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental evidence shows that the mechanism of pore formation by actinoporins is a multistep process, involving binding of the water-soluble monomer to the membrane and subsequent oligomerization on the membrane surface, leading to the formation of a functional pore. However, as for other eukaryotic pore-forming toxins, the molecular details of the mechanism of membrane insertion and oligomerization are not clear. In order to obtain further insight with regard to the structure-function relationship in sticholysins, we designed and produced three cysteine mutants of recombinant sticholysin I (rStI) in relevant functional regions for membrane interaction: StI E2C and StI F15C (in the N-terminal region) and StI R52C (in the membrane binding site). The conformational characterization derived from fluorescence and CD spectroscopic studies of StI E2C, StI F15C and StI R52C suggests that replacement of these residues by Cys in rStI did not noticeably change the conformation of the protein. The substitution by Cys of Arg(52) in the phosphocholine-binding site, provoked noticeable changes in rStI permeabilizing activity; however, the substitutions in the N-terminal region (Glu(2), Phe(15)) did not modify the toxin`s permeabilizing ability. The presence of a dimerized population stabilized by a disulfide bond in the StI E2C mutant showed higher pore-forming activity than when the protein is in the monomeric state, suggesting that sticholysins pre-ensembled at the N-terminal region could facilitate pore formation. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have examined the effect of the uncharged species of lidocaine (LDC) and etidocaine (EDC) on the acyl chain moiety of egg phosphatidylcholine liposomes. Changes in membrane organization caused by both anesthetics were detected through the use of EPR spin labels (5, 7 and 12 doxyl stearic acid methyl ester) or fluorescence probes (4, 6, 10, 16 pyrene-fatty acids). The disturbance caused by the LA was greater when the probes were inserted in more external positions of the acyl chain and decreased towards the hydrophobic core of the membrane. The results indicate a preferential insertion of LDC at the polar interface of the bilayer and in the first half of the acyl chain, for EDC. Additionally, 2 H NMR spectra of multilamellar liposomes composed by acyl chain-perdeutero DMPC and EPC (1:4 mol%) allowed the determination of the segmental order (S-mol) and dynamics (T-1) of the acyl chain region. In accordance to the fluorescence and EPR results, changes in molecular orientation and dynamics are more prominent if the LA preferential location is more superficial, as for LDC while EDC seems to organize the acyl chain region between carbons 2-8, which is indicative of its positioning. We propose that the preferential location of LDC and EDC inside the bilayers creates a ""transient site"", which is related to the anesthetic potency since it could modulate the access of these molecules to their binding site(s) in the voltage-gated sodium channel. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We synthesize and characterize alkylthiohydroquinones (ATHs) in order to investigate their interactions with lipid model membranes, POPE and POPC. We observe the formation of structures with different morphologies, or curvature of the lipid bilayer, depending on pH and increasing temperature. We attribute their formation to changes in the balance charge/polarity induced by the ATHs. Mixtures of ATHs with POPE at pH 4 form two cubic phases, P4(3)32 and Im3m, that reach a maximum lattice size at 40 degrees C while under basic conditions these phases only expand upon heating from room temperature. The cubic phases coexist with lamellar or hexagonal phases and are associated with inhomogeneous distribution of the ATH molecules over the lipid matrix. The zwitterionic POPC does not form cubic phases but instead shows lamellar structures with no clear influence of the 2,6-BATH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model. Material and methods In the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm). Conclusions The use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process. To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study is to verify the regenerative potential of particulate anorganic bone matrix synthetic peptide-15 (ABM-P-15) in class III furcation defects associated or not with expanded polytetrafluoroethylene membranes. Methods: Class III furcation defects were produced in the mandibular premolars (P2, P3, and P4) of six dogs and filled with impression material. The membranes and the bone grafts were inserted into P3 and P4, which were randomized to form the test and control groups, respectively; P2 was the negative control group. The animals were sacrificed 3 months post-treatment. Results: Histologically, the complete closure of class III furcation defects was not observed in any of the groups. Partial periodontal regeneration with similar morphologic characteristics among the groups was observed, however, through the formation of new cementum, periodontal ligament, and bone above the notch. Histologic analysis showed granules from the bone graft surrounded by immature bone matrix and encircled by newly formed tissue in the test group. The new bone formation area found in the negative control group was 2.28 +/- 2.49 mm(2) and in the test group it was 6.52 +/- 5.69 mm(2), which showed statistically significant differences for these groups considering this parameter (Friedman test P <0.05). There was no statistically significant difference among the negative control, control, and test groups for the other parameters. Conclusions: The regenerative potential of ABM-P-15 was demonstrated through new bone formation circumscribing and above the graft particles. The new bone also was accompanied by the formation of new cementum and periodontal ligament fibers. J Periodontol 2010;81:594-603.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aqueous dispersions of the anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) at pH above the apparent pK of DMPG and concentrations in the interval 70-300 mM have been investigated by small (SAXS) and wide-angle X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. The order. disorder transition of the hydrocarbon chains occurs along an interval of about 10 degrees C (between T(m)(on) similar to 20 degrees C and T(m)(off) similar to 30 degrees C). Such melting regime was previously characterized at lower concentrations, up to 70 mM DMPG, when sample transparency was correlated with the presence of pores across the bilayer. At higher concentrations considered here, the melting regime persists but is not transparent. Defined SAXS peaks appear and a new lamellar phase L(p) with pores is proposed to exist above 70 mM DMPG, starting at similar to 23 degrees C (similar to 3 degrees C above T(m)(on)) and losing correlation after T(m)(off). A new model for describing the X-ray scattering of bilayers with pores, presented here, is able to explain the broad band attributed to in-plane correlation between pores. The majority of cell membranes have a net negative charge, and the opening of pores across the membrane tuned by ionic strength, temperature, and lipid composition is likely to have biological relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 mu M is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption. (C) 2009 Elsevier B.V. All rights reserved.