10 resultados para Mixed valent diruthenium(II,III)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Two porous mixed valent diruthenium(II,III)-dicarboxylate compounds have been prepared and characterized by spectroscopic methods, X-ray diffraction and thermogravimetry. Crystalline solids of [Ru(2)(tere)(2)Cl] center dot 3.5H(2)O (tere=terephthalate) and [Ru(2)(adip)(2)Cl] center dot 1.5H(2)O (adip=adipate) consist of extended chains in which polymeric layers of multiply metal-metal bonded [Ru(2)](5+) cores are bridged by dicarboxylate ligands in paddlewheel type geometries. Units of [Ru(2)(dicarboxylate)(2)](n)(+) are linked by axial bridging chloride ions generating three-dimensional networks. The polymers loose non-bonded water molecules at low temperatures but do not undergo thermal decomposition below 280-300 degrees C. Both of compounds exhibit high BET surface areas, [Ru(2)(tere)(2)Cl]: 235 m(2) g(-1) and [Ru(2)(adip)(2)Cl]: 281 m(2) g(-1), and occlude similar numbers of mol of N(2) per mol of metal. The terephthalate ligand generated an organized structure with supermicropores (total pore size of 0.24 cm(3) g(-1)) while the adipate ligand led to a mesoporous structure (total pore sizes of 0.47 cm(3) g(-1)) for the corresponding diruthenium(II,III)-dicarboxylate polymers. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
[Ru-2(dNSAID)(4)Cl] and novel [Ru-2(dNSAID)(4)(H2O)(2)]PF6 complexes, where dNSAID = deprotonated carboxylate from the non-steroidal anti-inflammatory drugs (NSIDs), respectively: ibuprofen, Hibp (1) and aspirin, Hasp (2); naproxen, Hnpx (3) and indomethacin, Hind (4), have been prepared and characterized by optical spectroscopic methods. All of the compounds exhibit mixed valent Ru-2(II, III) cores where metal-metal bonds are stabilized by four drug-carboxylate bridging ligands in paddlewheel type structures. The diruthenium complexes and their parent NSAIDs showed no significant effects for Hep2 human larynx or T24/83 human bladder tumor. In contrast, the coordination of Ru-2(II,III) core led to synergistic effects that increased significantly the inhibition of C6 rat glioma proliferation in relation to the organic NSAIDs naproxen and ibuprofen, The possibility that the complexes Ru-2-ibp and Ru-2-npx may exert effects (anti-angiogenic and anti-matrix metalloprotease) that are similar to those exhibited by NAMI-A opens new horizons for in vivo C6 glioma model studies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The present study reports the synthesis of a novel compound with the formula [Ru(2)(aGLA)(4)Cl] according to elemental analyses data, referred to as Ru(2)GLA. The electronic spectra of Ru(2)GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru(2)GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and gamma-linolenic acid (GLA). The properties of Ru(2)GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru(2)GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru(2)GLA enters the cells and ICP-AES elemental analysis found all increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru(2)GLA (22 +/- 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru(2)GLA (44 +/- 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 +/- 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru(2)GLA exposed cells. The EC(50) for Ru(2)GLA decreased with increasing time of exposure from 285 mu M at 24h, 211 mu M at 48 h to 81 mu M at 72 h. In conclusion, Ru(2)GLA is a novel drug with anti proliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Three novel polymetallic ruthenium (III) meso-tetra(4-pyridyl)porphyrins containing peripheral ""RuCl(3)(dppb)"" moieties have been prepared and characterized. The X-ray structure of the tetraruthenated {NiTPyP[RuCl(3)(dppb)](4)} porphyrin complex crystallizes in the triclinic space group FT. This structure is discussed and compared with the crystal data for the mer-[RuCl(3)(dppb)(py)]. The {TPyP[RuCl(3)(dppb)](4)} and {CoTPyP[RuCl(3)(dppb)](4)} porphyrins were used to obtain electrogenerated films on ITO and glass carbon electrode surfaces, respectively. Such tetraruthenated porphyrins form films of a mixed-valence species {TPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2)(4n2+) and {CoTPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2n)(4n2+) on the electrode surface. The modified electrode with {CoTPyP[RuCl(3)(dppb)](4)} is very stable and can be used to detect organic substrates such as catechol.
Resumo:
Ruthenium compounds have been actively studied as metallodrugs for cancer therapy. Representatives of ruthenium-based antitumor drugs are the classes of ruthenium(III)-chlorido-(N-ligand)complexes, including the drugs namely NAMI-A and KP1019 in clinical trials, and ruthenium(II)-arene organometallics, with some compounds currently undergoing advanced preclinical testing. An alternative approach for tumor-inhibiting metallodrugs is the coordination of metal ions to organic pharmaceuticals. The combination of antitumor-active ruthenium ion with biologically-active pro-ligands in single compounds can result in the enhancement of activity, for example through synergistic effects. In the present article, some developments in the ruthenium-based antitumor drugs field are briefly highlighted and recent studies on mixed diruthenium-organic drugs as metallopharmaceuticals in cancer therapy are described. Novel organic pharmaceuticals-containing diruthenium(II, III)complexes have shown promising antitumor activity for C6 rat glioma - a model for glioblastoma multiforme (GBA).
Resumo:
In this study we examined the possible antigenotoxic effect of selenium (Se) in rats chronically exposed to low levels of methylmercury (MeHg) and the association between glutathione peroxidase (GSH-Px) activity and DNA lesions (via comet assay) in the same exposed animals. Rats were divided into six groups as follows: (Group I) received water; (Group II) received MeHg (100 mu g/day); (Group III) received Se (2 mg/L drinking water); (Group IV) received Se (6 mg/L drinking water); (Group V) received MeHg (100 mu g/day) and Se (2 mg/L drinking water); (Group VI) received MeHg (100 mu g/day) and Se (6 mg/L drinking water). Total treatment time was 100 days. GSH-Px activity was determined spectrophotometrically and DNA damage was determined by comet assay. Mean GSH-Px activity in groups I, II, III, IV, V and VI were, respectively: 40.19 +/- A 17.21; 23.63 +/- A 6.04; 42.64 +/- A 5.70; 38.50 +/- A 7.15; 34.54 +/- A 6.18 and 41.39 +/- A 11.67 nmolNADPH/min/gHb. DNA damage was represented by a mean score from 0 to 300; the results for groups I, II, III, IV, V and VI were, respectively: 6.87 +/- A 3.27; 124.12 +/- A 13.74; 10.62 +/- A 3.81; 13.25 +/- A 1.76; 86.87 +/- A 11.95 and 76.25 +/- A 7.48. There was a significant inhibition of GSH-Px activity in group II compared with group I (P < 0.05). Groups V and VI did not show a difference in enzyme activity compared with groups III and IV, showing the possible protective action of Se. Comet assay presented a significant difference in DNA migration between group II and group I (P < 0.0001). Groups V and VI showed a significant reduction in MeHg-induced genotoxicity (P < 0.001) when compared with group II. A negative correlation (r = -0.559, P < 0.05) was found between GSH-Px activity and DNA lesion, showing that the greater the DNA damage, the lower the GSH-Px activity. Our findings demonstrated the oxidative and genotoxic properties of MeHg, even at low doses. Moreover, Se co-administration reestablished GSH-Px activity and reduced DNA damage.
Resumo:
Sodium channel toxins from sea anemones are employed as tools for dissecting the biophysical properties of inactivation in voltage-gated sodium channels. Cangitoxin (CGTX) is a peptide containing 48 amino acid residues and was formerly purified from Bunodosoma cangicum. Nevertheless, previous works reporting, the isolation procedures for such peptide from B. cangicum secretions are controversial and may lead to incorrect information. In this paper, we report a simple and rapid procedure, consisting of two chromatographic steps, in order to obtain a CGTX analog directly from sea anemone venom. We also report a substitution of N16D in this peptide sample and the co-elution of an inseparable minor isoform presenting the R14H substitution. Peptides are named as CGTX-II and CGTX-III, and their effects over Nav1.1 channels in patch clamp experiments are demonstrated. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.
Resumo:
Presented herein is the synthesis and characterization of a new Fe(III)Zn(II) complex containing a Fe(III)-bound phenolate with a carbonyl functional group, which was anchored to 3-aminopropylfunctionalized silica as the solid support. The catalytic efficiency of the immobilized catalyst in the hydrolysis of 2,4-bis (dinitrophenyl) phosphate is comparable to the homogeneous reaction, and the supported catalyst can be reused for subsequent diester hydrolysis reactions.
Resumo:
The influence of molecular oxygen in the interactions of emeraldine base form of polyaniline (EB-PANI) with Fe(III) or Cu(II) ions in 1-methyl-2-pyrrolidinone (NMP) solutions has been investigated by UV-vis-NIR, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies. Through the set of spectroscopic results it was possible to rationalize the role Of O(2) and to construct a scheme of preferential routes occurring in the interaction of EB-PANI with Fe(III) or Cu(II). Solutions of 4.0 mmol L(-1) EB-PANI with 0.8, 2.0 and 20 mmol L(-1) Fe(III) or Cu(II) ions in NMP were investigated and the main observed reactions were EB-PANI oxidation to pernigraniline (PB-PANI) and EB-PANI doping process by pseudo-protonation, or by a two-step redox process. In the presence Of O(2), PB-PANI is observed in all Fe(III)/EB solutions and EB-PANI doping only occurs in solutions with high Fe(III) concentrations through pseudo-protonation. On the other hand, emeraldine salt (ES-PANI) is formed in all Fe(III)/EB solutions under N(2) atmosphere and, in this case, doping occurs both by the pseudo-protonation and two-step redox mechanisms. In all Cu(II)/EB solutions PB-PANI is formed both in the presence and absence of O(2), and only for solutions with high Cu(II) concentrations doping process occurs in a very low degree. The most important result from EPR spectra was providing evidence for redox steps. The determined Cu(II) signal areas under oxygen are higher than under N(2) and, further. the initial metal proportions (1:2:20) are maintained in these spectra, indicating that Cu(I) formed are re-oxidized by O(2) and. so, Cu(II) ions are being recycled. Consistently, for the solutions prepared under nitrogen, the corresponding areas and proportions in the spectra are much lower, confirming that a partial reduction of Cu(II) ions actually occurs. (C) 2009 Elsevier B.V. All rights reserved.