153 resultados para Mild Peroxidative Oxidation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the magnetic separation approach to facilitate the recovery of gold nanoparticle (AuNP) catalysts. The use of magnetically recoverable supports for the immobilization of AuNPs instead of traditional oxides, polymers or carbon based solids guarantees facile, clean, fast and efficient separation of the catalyst at the end of the reaction cycle. Magnetic separation can be considered an environmentally benign separation approach, since it minimizes the use of auxiliary substances and energy for achieving catalyst recovery. The catalyst preparation is based on the immobilization of Au(3+) on the surface of core-shell silica-coated magnetite nanoparticles, followed by metal reduction using two different methods. AuNPs were prepared by thermal reduction in air and by hydrogen reduction at mild temperature. Interestingly, the mean particle size of the supported AuNPs was similar (ca. 5.9 nm), but the polydispersity of the samples is quite different. The catalytic activity of both catalysts in the aerobic oxidation of alcohols was investigated and a distinct selectivity for benzyl alcohol oxidation was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Described herein is a one-pot synthesis of a,p-epoxy ketones using a palladium-catalyzed epoxidation-oxidation sequence. Functionalized terminal allylic alcohols are treated with m-CPBA Under mild reaction conditions to obtain the alpha,beta-epoxy ketones. The main benefit of this approach is that the epoxidation of the terminal double bond and the oxidation of the secondary alcohol occured in the same reaction under mild reactions and both electron-donating and electron-withdrawing functionalities are tolerated in the reaction sequence. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress has been associated with normal aging and Alzheimer`s disease (AD). However, little is known about oxidative stress in mild cognitive impairment (MCI) patients who present a high risk for developing AD. The aim of this study was to investigate plasma production of the lipid peroxidation marker, malonaldehyde (MDA) and to determine, in erythrocytes, the enzymatic antioxidant activity of catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) in 33 individuals with MCI, 29 with mild probable AD and 26 healthy aged subjects. GR/GPx activity ratio was calculated to better assess antioxidant defenses. The relationship between oxidative stress and cognitive performance was also evaluated by the Mini Mental State Examination (MMSE). AD patients showed higher MDA levels than both MCI and healthy elderly subjects. MCI subjects also exhibited higher MDA levels compared to controls. Catalase and GPx activity were similar in MCI and healthy individuals but higher in AD. GR activity was lower in MCI and AD patients than in healthy aged subjects. Additionally, GR/GPx ratio was higher in healthy aged subjects, intermediate in MCI and lower in AD patients. No differences in GST activity were detected among the groups. MMSE was negatively associated with MDA levels (r = -0.31, p = 0.028) and positively correlated with GR/GPx ratio in AD patients (r = 0.68, p < 0.001). MDA levels were also negatively correlated to GR/GPx ratio (r = -0.31, p = 0.029) in the AD group. These results suggest that high lipid peroxidation and decreased antioxidant defenses may be present early in cognitive disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We here report the synthesis, characterization and catalytic performance of new supported Ru(III) and Ru(0) catalysts. In contrast to most supported catalysts, these new developed catalysts for oxidation and hydrogenation reactions were prepared using nearly the same synthetic strategy, and are easily recovered by magnetic separation from liquid phase reactions. The catalysts were found to be active in both forms, Ru(III) and Ru(0), for selective oxidation of alcohols and hydrogenation of olefins, respectively. The catalysts operate under mild conditions to activate molecular oxygen or molecular hydrogen to perform clean conversion of selected substrates. Aryl and alkyl alcohols were converted to aldehydes under mild conditions, with negligible metal leaching. If the metal is properly reduced, Ru(0) nanoparticles immobilized on the magnetic support surface are obtained, and the catalyst becomes active for hydrogenation reactions. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caloric restriction is the most effective non-genetic intervention to enhance lifespan known to date. A major research interest has been the development of therapeutic strategies capable of promoting the beneficial results of this dietary regimen. In this sense, we propose that compounds that decrease the efficiency of energy conversion, such as mitochondrial uncouplers, can be caloric restriction mimetics. Treatment of mice with low doses of the protonophore 2,4-dinitrophenol promotes enhanced tissue respiratory rates, improved serological glucose, triglyceride and insulin levels, decrease of reactive oxygen species levels and tissue DNA and protein oxidation, as well as reduced body weight. Importantly, 2,4-dinitrophenol-treated animals also presented enhanced longevity. Our results demonstrate that mild mitochondrial uncoupling is a highly effective in vivo antioxidant strategy, and describe the first therapeutic intervention capable of effectively reproducing the physiological, metabolic and lifespan effects of caloric restriction in healthy mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified method for the calculation of the normalized faradaic charge (q fN) is proposed. The method involves the simulation of an oxidation process, by cyclic voltammetry, by employing potentials in the oxygen evolution reaction region. The method is applicable to organic species whose oxidation is not manifested by a defined oxidation peak at conductive oxide electrodes. The variation of q fN for electrodes of nominal composition Ti/RuX Sn1-X O2 (x = 0.3, 0.2 and 0.1), Ti/Ir0.3Ti0.7O2 and Ti/Ru0.3Ti0.7O2 in the presence of various concentrations of formaldehyde was analyzed. It was observed that electrodes containing SnO2 are the most active for formaldehyde oxidation. Subsequently, in order to test the validity of the proposed model, galvanostatic electrolyses (40 mA cm-2) of two different formaldehyde concentrations (0.10 and 0.01 mol dm-3) were performed. The results are in agreement with the proposed model and indicate that this new method can be used to determine the relative activity of conductive oxide electrodes. In agreement with previous studies, it can be concluded that not only the nature of the electrode material, but also the organic species in solution and its concentration are important factors to be considered in the oxidation of organic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to compare maximal fat oxidation rate parameters between moderate-and low-performance runners. Eighteen runners performed an incremental treadmill test to estimate individual maximal fat oxidation rate (Fat(max)) based on gases measures and a 10,000-m run on a track. The subjects were then divided into a low and moderate performance group using two different criteria: 10,000-m time and VO(2)max values. When groups were divided using 10,000-m time, there was no significant difference in Fat(max) (0.41 +/- 0.16 and 0.27 +/- 0.12 g.min(-1), p = 0.07) or in the exercise intensity that elicited Fat(max) (59.9 +/- 16.5 and 68.7 +/- 10.3 % (V) over dotO(2max), p = 0.23) between the moderate and low performance groups, respectively (p > 0.05). When groups were divided using VO(2max) values, Fat(max) was significantly lower in the low VO(2max) group than in the high VO(2max) group (0.29 +/- 0.10 and 0.47 +/- 0.17 g.min(-1), respectively, p < 0.05) but the intensity that elicited Fat(max) did not differ between groups (64.4 +/- 14.9 and 61.6 +/- 15.4 % VO(2max)). Fat(max) or % VO(2max) that elicited Fat(max) was not associated with 10,000 m time. The only variable associated with 10,000-m running performance was % VO(2max) used during the run (p < 0.01). In conclusion, the criteria used for the division of groups according to training status might influence the identification of differences in Fat(max) or in the intensity that elicits Fat(max).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed. Methods: Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion ROM) were compared between the two groups walking at similar speeds. Results: The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p < 0.05). Hip abduction and knee flexion at initial contact, as well as minimal knee flexion at stance, were larger in the CCS group (p < 0.05). However, the range of knee and ankle motion in the sagittal plane was greater in the CG group (p < 0.05). The maximal ankle plantar-flexion values in stance phase and at toe off were larger in the CG (p < 0.05). Conclusions: The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and beta-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoprene represents the single most important reactive hydrocarbon for atmospheric chemistry in the tropical atmosphere. It plays a central role in global and regional atmospheric chemistry and possible climate feedbacks. Photo-oxidation of primary hydrocarbons (e. g. isoprene) leads to the formation of oxygenated VOCs (OVOCs). The evolution of these intermediates affects the oxidative capacity of the atmosphere (by reacting with OH) and can contribute to secondary aerosol formation, a poorly understood process. An accurate and quantitative understanding of VOC oxidation processes is needed for model simulations of regional air quality and global climate. Based on field measurements conducted during the Amazonian Aerosol Characterization Experiment (AMAZE-08) we show that the production of certain OVOCs (e. g. hydroxyacetone) from isoprene photo-oxidation in the lower atmosphere is significantly underpredicted by standard chemistry schemes. Recently reported fast secondary production could explain 50% of the observed discrepancy with the remaining part possibly produced via a novel primary production channel, which has been proposed theoretically. The observations of OVOCs are also used to test a recently proposed HO(x) recycling mechanism via degradation of isoprene peroxy radicals. If generalized our observations suggest that prompt photochemical formation of OVOCs and other uncertainties in VOC oxidation schemes could result in uncertainties of modelled OH reactivity, potentially explaining a fraction of the missing OH sink over forests which has previously been largely attributed to a missing source of primary biogenic VOCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS)-.1-(phenyl) ethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases) for enantioselective oxidation reactions, by using derivatives of (RS)-.1-(phenyl) ethanol as substrates. Among the studied microorganisms, 15 psychrophile/psychrotroph strains contain oxidoreductases that catalyze the (S)-.enantiomer oxidation from racemic alcohols to their corresponding ketones. Among the identified microorganisms, Flavobacterium sp. and Arthrobacter sp. showed excellent enzymatic activity. These new bacteria strains were selected for optimization study, in which the (RS)-.1-(4-.methyl-.phenyl) ethanol oxidation was evaluated in several reaction conditions. From these studies, it was observed that Flavobacterium sp. has an excellent enzymatic activity at 10 degrees C and Arthrobacter sp. at 15 and 25 degrees C. We have also determined the growth curves of these bacteria, and both strains showed optimum growth at 25 degrees C, indicating that these bacteria are psychrotroph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecule oxidation promoted by Cu, Zn-superoxide dismutase (SOD1) has been studied because of its potential role in neurodegenerative diseases. We studied the mechanism of DNA damage promoted by the SOD1-H(2)O(2) system. The system promoted the formation of strand breaks in plasmid DNA and the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in calf thymus DNA. We were also able to detect, for the. first time, 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilon dGuo) in calf thymus DNA exposed to SOD1-H(2)O(2). The addition of a copper chelator caused a decrease in the frequency of 8-oxodGuo and 1,N(2)-epsilon dGuo, indicating the participation of copper ions lost from SOD1 active sites. The addition of bicarbonate increased the levels of both DNA lesions. We conclude that copper liberated from SOD1 active sites has a central role in the mechanism of DNA damage promoted by SOD1 in the presence of H(2)O(2), and that bicarbonate can modulate the reactivity of released copper.