5 resultados para Mg(0001) Surface
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A survey of pediatric radiological examinations was carried out in a reference pediatric hospital of the city of Sao Paulo. in order to investigate the doses to children undergoing conventional X-ray examinations. The results showed that the majority of pediatric patients are below 4 years, and that about 80% of the examinations correspond to chest projections. Doses to typical radiological examinations were measured in vivo with thermoluminescent dosimeters (LiF: Mg, Ti and LiF: Mg, Cu, P) attached to the skin of the children to determine entrance surface dose (ESD). Also homogeneous phantoms were used to obtain ESD to younger children, because the technique uses a so small kVp that the dosimeters would produce an artifact image in the patient radiograph. Four kinds of pediatric examinations were investigated: three conventional examinations (chest, skull and abdomen) and a fluoroscopic procedure (barium swallow). Relevant information about kVp and mAs values used in the examinations was collected, and we discuss how these parameters can affect the ESD. The ESD values measured in this work are compared to reference levels published by the European Commission for pediatric patients. The results obtained (third-quartile of the ESD distribution) for chest AP examinations in three age groups were: 0.056 mGy (2-4 years old); 0,068 mGy (5-9 years old)-. 0.069 mGy (10-15 years old). All of them are below the European reference level (0.100mGy). ESD values measured to the older age group in skull and abdomen AP radiographs (mean values 3.44 and 1.20mGy, respectively) are above the European reference levels (1.5mGy to skull and 1.0 mGy to abdomen). ESD values measured in the barium swallow examination reached 10 mGy in skin regions corresponding to thyroid and esophagus. It was noticed during this survey that some technicians use, improperly, X-ray fluoroscopy in conventional examinations to help them in positioning the patient. The results presented here are a preliminary survey of doses in pediatric radiological examinations and they show that it is necessary to investigate the technical parameters to perform the radiographs. to introduce practices to control pediatric patient`s doses and to improve the personnel training to perform a pediatric examination. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Leptospixosis, a spirochaetal zoonotic disease caused by Leptospira, has been recognized as an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospires, where it accounts for up to 75% of the total outer membrane proteins. It is highly immunogenic, and recent studies have implicated LipL32 as an extracellular matrix binding protein, interacting with collagens, fibronectin, and laminin. In order to better understand the biological role and the structural requirements for the function of this important lipoprotein, we have determined the 2.25-angstrom-resolution structure of recombinant LipL32 protein corresponding to residues 21-272 of the wild-type protein (LipL32(21-272)). The LipL32(21-272) monomer is made of a jelly-roll fold core from which several peripheral secondary structures protrude. LipL32(21-272) is structurally similar to several other jelly-roll proteins, some of which bind calcium ions and extracellular matrix proteins. Indeed, spectroscopic data (circular dichroism, intrinsic tryptophan fluorescence, and extrinsic 1-amino-2-naphthol-4-sulfonic acid fluorescence) confirmed the calcium-binding properties of LipL32(21-272). Ca(2+) binding resulted in a significant increase in the thermal stability of the protein, and binding was specific for Ca(2+) as no structural or stability perturbations were observed for Mg(2+), Zn(2+), or Cu(2+). Careful examination of the crystal lographic structure suggests the locations of putative regions that could mediate Ca(2+) binding as well as binding to other interacting host proteins, such as collagens, fibronectin, and lamixidn. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Catalysts` precursor of Co/Mg/Al promoted with Ce and La were tested in the steam reforming of methane (SRM). The addition of promoters was made by anion-exchange. The oxides characterization was made by X-ray Photoelectron Spectroscopy (XPS) analysis that confirmed Co(2+) species in free form on surface and interacted with Mg and Al in the form of solid solution. In the SRM with high fed molar ratio of H(2)O:CH(4) = 4:1, the catalysts showed a great affinity with water and immediately deactivated by oxidation of the active sites. In the stoichiometric ratio of H(2)O:CH(4) = 2: 1 the catalysts were active and presented low carbon deposition during the time reaction tested. Also a test with low fed molar ratio H(2)O:CH(4) = 0.5:1 was carried out to evaluate the stability of the catalysts by CH(4) decomposition and all the catalysts were stable during 6 h of reaction. Promoted catalysts presented lower carbon deposition. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The Mg-Ni metastable alloys (with amorphous or nanocrystalline structures) are promising candidates for anode application in nickel-metal hydride rechargeable batteries due to its large hydrogen absorbing capacity, low weight, availability, and relative low price. In spite of these interesting features, improvement on the cycle life performance must be achieved to allow its application in commercial products. In the present paper, the effect of mechanical coating of a Mg-50 at.% Ni alloy with Ni and Ni-5 at.% Al on the structure, powder morphology, and electrochemical properties is investigated. The coating additives, Mg-Ni alloy and resulting nanocomposites (i.e., Mg-Ni alloy + additive) were investigated by means of X-ray diffraction and scanning electron microscopy. The Mg-Ni alloy and nanocomposites were submitted to galvanostatic cycles of charge and discharge to evaluate their electrode performances. The mechanical coating with Ni and Ni-5% Al increased the maximum discharge capacity of the Mg-Ni alloy from of 221 to 257 and 273 mA h g(-1), respectively. Improvement on the cycle life performance was also achieved by mechanical coating.
Resumo:
Catalyst precursors composed of Ni/Mg/Al oxides with added La and Ce were tested in ethanol steam reforming (ESR) reactions. La and Ce were added by anion-exchange. The oxides were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) analysis. The catalyst precursors consist of a mixture of oxides, with the nickel in the form of NiO strongly interacting with the support Mg/Al. The XPS analysis showed a lanthanum-support interaction, but no interaction of Ce species with the support. The reaction data obtained with the active catalysts showed that the addition of Ce and La resulted in better H(2) production at 550 degrees C. The CeNi catalyst provided the higher ethanol conversion, with lower acetaldehyde production, possibly clue to a favoring of water adsorption on the weakly interacting clusters of CeO(2) on the surface. (C) 2010 Elsevier B.V. All rights reserved.