42 resultados para Meteorology in aeronautics.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m(-3)]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16A degrees C and above 25A degrees C caused a reduction in the concentration (CFU m(-3)) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to determine the relationship among temperatures measured at different anatomical sites of the animal body and their daily pattern as indicative of the thermal stress in lactating dairy cows under tropical conditions. Environmental dry bulb (DBT) and black globe (BGT) temperatures and relative humidity (RH) were recorded. Rectal temperature (RT), respiratory frequency (RF), body surface (BST), internal base of tail (TT), vulva (VT) and auricular temperatures (AT) were collected, from 37 Black and White Holstein cows at 0700, 1300 and 1800 hours. RT showed a moderately and positive correlations with all body temperatures, ranging from 0.59 with TT to 0.64 with BST. Correlations among AT, VT and TT with RF were very similar (from 0.63 to 0.64) and were greater than those observed for RF with RT (0.55) or with BST (0.54). RF and RT were positively correlated to TT (0.63 and 0.59, respectively), AT (r = 0.63 for both) and VT (r = 0.64 and 0.63, respectively). Positive and very high correlations were observed among AT, VT and TT (from 0.94 to 0.97) indicating good association of temperatures measured in these anatomical sites. Correlations of BST with AT and VT were positive and very similar (0.71 and 0.72, respectively) and lower with TT (0.66). The AT, TT, VT and BST presented similar patterns and follow the variations of DBT through the day. Temperatures measured at different anatomical sites of the animal body have the potential to be used as indicative of the thermal stress in lactating dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensitivity of solar irradiance at the surface to the variability of aerosol intensive optical properties is investigated for a site (Alta Floresta) in the southern portion of the Amazon basin using detailed comparisons between measured and modeled irradiances. Apart from aerosol intensive optical properties, specifically single scattering albedo (omega(o lambda)) and asymmetry parameter (g(lambda)), which were assumed constant, all other relevant input to the model were prescribed based on observation. For clean conditions, the differences between observed and modeled irradiances were consistent with instrumental uncertainty. For polluted conditions, the agreement was significantly worse, with a root mean square difference three times larger (23.5 Wm(-2)). Analysis revealed a noteworthy correlation between the irradiance differences (observed minus modeled) and the column water vapor (CWV) for polluted conditions. Positive differences occurred mostly in wet conditions, while the differences became more negative as the atmosphere dried. To explore the hypothesis that the irradiance differences might be linked to the modulation of omega(o lambda) and g(lambda) by humidity, AERONET retrievals of aerosol properties and CWV over the same site were analyzed. The results highlight the potential role of humidity in modifying omega(o lambda) and g(lambda) and suggest that to explain the relationship seen between irradiances differences via aerosols properties the focus has to be on humidity-dependent processes that affect particles chemical composition. Undoubtedly, there is a need to better understand the role of humidity in modifying the properties of smoke aerosols in the southern portion of the Amazon basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we present a climatology of the Amazon squall lines (ASLs), between the years 2000 and 2008, using satellite imagery and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses. The ASLs we are interested in are typically formed along the northern coast of Brazil and sometimes propagate for long distances inland. Results show that, on average, an ASL occurs every 2 days. ASLs are more frequent between April and June and less frequent between October and November. The years of 2005 and 2006 showed 25% more cases than the other years. This might be related to an increase of the Atlantic sea surface temperature. Of the total number of ASL cases, 54% propagated less than 170 km, 26% propagated between 170 and 400 km, and 20% propagated more than 400 km. We also studied the occurrence of low level jets (LLJs) associated with the coastal ASLs. Although LLJs are always present in the environment before the formation of the ASL and even on days without ASL cases, important differences were found, mainly related to the LLJ depths. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ozone dynamics depend on meteorological characteristics such as wind, radiation, sunshine, air temperature and precipitation. The aim of this study was to determine ozone trajectories along the northern coast of Portugal during the summer months of 2005, when there was a spate of forest fires in the region, evaluating their impact on respiratory and cardiovascular health in the greater metropolitan area of Porto. We investigated the following diseases, as coded in the ninth revision of the International Classification of Diseases: hypertensive disease (codes 401-405); ischemic heart disease (codes 410-414); other cardiac diseases, including heart failure (codes 426-428); chronic obstructive pulmonary disease and allied conditions, including bronchitis and asthma (codes 490-496); and pneumoconiosis and other lung diseases due to external agents (codes 500-507). We evaluated ozone data from air quality monitoring stations in the study area, together with data collected through HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model analysis of air mass circulation and synoptic-scale zonal wind from National Centers for Environmental Prediction data. High ozone levels in rural areas were attributed to the dispersion of pollutants induced by local circulation, as well as by mesoscale and synoptic scale processes. The fires of 2005 increased the levels of pollutants resulting from the direct emission of gases and particles into the atmosphere, especially when there were incoming frontal systems. For the meteorological case studies analyzed, peaks in ozone concentration were positively associated with higher rates of hospital admissions for cardiovascular diseases, although there were no significant associations between ozone peaks and admissions for respiratory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms resulting in large daily rainfall events in Northeast Brazil are analyzed using data filtering to exclude periods longer than 30 days. Composites of circulation fields that include all independent events do not reveal any obvious forcing mechanisms as multiple patterns contribute to Northeast Brazil precipitation variability. To isolate coherent patterns, subsets of events are selected based on anomalies that precede the Northeast Brazil precipitation events at different locations. The results indicate that at 10 degrees S, 40 degrees W, the area of lowest annual rainfall in Brazil, precipitation occurs mainly in association with trailing midlatitude synoptic wave trains originating in either hemisphere. Closer to the equator at 5 degrees S, 37.5 degrees W, an additional convection precursor is found to the west, with a spatial structure consistent with that of a Kelvin wave. Although these two sites are located within only several hundred kilometers of each other and the midlatitude patterns that induce precipitation appear to be quite similar, the dates on which large precipitation anomalies occur at each location are almost entirely independent, pointing to separate forcing mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eddy-covariance measurements of net ecosystem exchange of CO(2) (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (R(E)) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall In the first (drier) year the annual NEE GEP and RE were lower than the sums in the second (normal) year and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year Although the net primary production (NPP) in the first year was 23% lower than that of the second year the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first dry year than in the second normal year The time variations in NEE were followed by NPP because in these young Eucalyptus plantations NEE is very largely dominated by NPP and heterotrophic respiration plays only a relatively minor role During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0 8 kPa Nighttime fluxes of CO(2) during calm conditions when the friction velocity (u) was below the threshold (0 25 ms(-1)) were estimated based on a Q(10) temperature-dependence relationship adjusted separately for different classes of soil moisture content which regulated the temperature sensitivity of ecosystem respiration (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5A degrees N-15A degrees S band, both in summer and especially in winter, reaching up to 6-8A degrees C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4A degrees C and in winter between 3 and 5A degrees C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of model runs for some regions, as the Northwest coast of Peru-Ecuador, northern Argentina, Eastern Amazonia and Northeast Brazil, whereas for other regions they are less robust as in Pantanal region of West Central and southeastern Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cutoff lows (COLs) pressure systems climatology for the Southern Hemisphere (SH), between 10 degrees S and 50 degrees S, using the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and the ERA-40 European Centre for Medium Range Weather Forecast (ECMWF) reanalyses are analyzed for the period 1979-1999. COLs were identified at three pressure levels (200, 300, and 500 hPa) using an objective method that considers the main physical characteristics of the conceptual model of COLs. Independently of the pressure level analyzed, the climatology from the ERA-40 reanalysis has more COLs systems than the NCEP-NCAR. However, both reanalyses present a large frequency of COLs at 300 hPa, followed by 500 and 200 hPa. The seasonality of COLs differs at each pressure level, but it is similar between the reanalyses. COLs are more frequent during summer, autumn, and winter at 200, 300, and 500 hPa, respectively. At these levels, they tend to occur around the continents, preferentially from southeastern Australia to New Zealand, the south of South America, and the south of Africa. To study the COLs at 200 and 300 hPa from a regional perspective, the SH was divided in three regions: Australia-New Zealand (60 E-130 W), South America (130 degrees W-20 degrees W), and southern Africa (20 degrees W-60 degrees E). The common COLs features in these sectors for both reanalyses are a short lifetime (similar to 80.0% and similar to 70.0% of COLs at 200 and 300 hPa, respectively, persisting for up to 3 days), mobility (similar to 70.0% and similar to 50% of COLs at 200 and 300 hPa, respectively, traveling distances of up to 1200 km), and an eastward propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the Lorenz energy cycle over a limited area was applied for three cyclones with different origins and evolutions, where each of them was formed in an important cyclogenetic region near southeastern South America. The synoptic conditions and energetics were analyzed during each system`s life cycle and showed important relationships between their energy cycle and the evolution of their vertical structure. In the case of the weak baroclinic cyclone which formed on Brazil`s south-southeastern coast, the analysis showed that it originated through a midlevel cutoff low with contribution from barotropic instability. Its evolution would indicate potential transition to a hybrid system if the convective activity were stronger. The system that occurred in the La Plata River mouth had features of an oceanic bomb-type cyclogenesis and showed an important contribution from the available potential energy generation term through the latent heat release by the convection. Meanwhile, the system of the southern Argentina coast presented a classical baroclinic development of extratropical cyclogenesis in the energy cycle, from the wave amplification up to the final occlusion of the associated frontal system. These analyses revealed that the development of some cyclones that occur in eastern South America can present different mechanisms that are not related to the classical extratropical cyclogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate estimate of the surface longwave fluxes contribution is important for the calculation of the surface radiation budget, which in turn controls all the components of the surface energy budget, such as evaporation and the sensible heat fluxes. This study evaluates the performance of the various downward longwave radiation parameterizations for clear and all-sky days applied to the Sertozinho region in So Paulo, Brazil. Equations have been adjusted to the observations of longwave radiation. The adjusted equations were evaluated for every hour throughout the day and the results showed good fits for most of the day, except near dawn and sunset, followed by nighttime. The seasonal variation was studied by comparing the dry period against the rainy period in the dataset. The least square linear regressions resulted in coefficients equal to the coefficients found for the complete period, both in the dry period and in the rainy period. It is expected that the best fit equation to the observed data for this site be used to produce estimates in other regions of the State of So Paulo, where such information is not available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulations are carried out to examine the role of the Kuo and Kain-Fritsch (KF) cumulus parameterization schemes and dry dynamics on a cyclone development, in a weak baroclinic atmosphere, over subtropical South Atlantic Ocean. The initial phase of the cyclone development is investigated with a coarse horizontal mesh (75 km) and when the cyclone reaches the mature stage two different horizontal resolutions are used (75 and 25 km). The best performance simulation for the cyclone initial phase occurs when the Kuo convective scheme is applied, and this may be attributed to a greater diabatic warming in the troposphere. On the other hand, the dry simulation is not capable of simulating the correct location and intensity of the cyclone in its initial phase. During the mature phase, a cyclone over deepening occurs in the Kuo scheme experiment associated with larger latent heat release in a deep vertical column. The presence of downdraft currents in the KF scheme, which acts to cool and dry the lower levels, is essential to stabilize the atmosphere and to reproduce the nearest observation cyclone deepening rate. The largest cyclone deepening is found in the Kuo scheme high resolution experiment. This suggests that the KF convective scheme is less sensitive to the horizontal grid resolution. It was also revealed that the diabatic processes are crucial to simulate the observed features of this marine cyclone over subtropical region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical experiments with the Brazilian additions to the Regional Atmospheric Modeling System were performed with two nested grids (50 and 10 km horizontal resolution, respectively) with and without the effect of biomass burning for 8 different situations for 96 h integrations. Only the direct radiative effect of aerosols is considered. The results were analyzed in large areas encompassing the BR163 road (one of the main areas of deforestation in the Amazon). mainly where most of the burning takes place. The precipitation change due to the direct radiative impact of biomass burning is generally negative (i.e., there is a decrease of precipitation). However, there are a few cases with a positive impact. Two opposite forcing mechanisms were explored: (a) the thermodynamic forcing that is generally negative in the sense that the aerosol tends to stabilize the lower atmosphere and (b) the dynamic impact associated with the low level horizontal pressure gradients produced by the aerosol plumes. In order to understand the non-linear relationship between the two effects, experiments were performed with 4-fold emissions. In these cases, the dynamic effect overcomes the stabilization produced by the radiative forcing and precipitation increase is observed in comparison with the control experiment. This study suggests that. in general, the biomass burning radiative forcing decreases the precipitation. However, very large concentrations of aerosols may lead to an increase of precipitation due to the dynamical forcing associated with the horizontal pressure gradients. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.