124 resultados para Metals Machinability
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Gracilaria Greville is a genus of seaweed that is economically explored by the cosmetic, pharmaceutical and food industries. One of the biggest problems associated with growing Gracilaria is the discharge of heavy metals into the marine environment. The absorption of heavy metals was investigated with the macroalga Gracilaria tenuistipitata Zhang et Xia, cultivated in a medium containing copper (Cu) and cadmium (Cd). In biological samples, EC50 concentrations of 1 ppm for cadmium and 0.95 ppm for copper were used. These concentrations were based on seaweed growth curves obtained over a period of six days in previous studies. ICP-AES was used to determine the amount of metal that seaweeds absorbed during this period. G. tenuistipitata was able to bioaccumulate both metals, about 17% of copper and 9% of cadmium. Basal natural levels of Cu were found in control seaweeds and in G. tenuistipitata exposed to Cd. In addition, the repertoire of other important chemical elements, as well as their concentrations, was determined for G. tenuistipitata and two other important seaweeds, G. birdiae Plastino & Oliveira and G. domingensis (Kützing) Sonder ex Dickie, collected in natural environments on the Brazilian shore.
Resumo:
Inductively coupled plasma optical emission spectrometers (ICP DES) allow fast simultaneous measurements of several spectral lines for multiple elements. The combination of signal intensities of two or more emission lines for each element may bring such advantages as improvement of the precision, the minimization of systematic errors caused by spectral interferences and matrix effects. In this work, signal intensities for several spectral lines were combined for the determination of Al, Cd, Co, Cr, Mn, Pb, and Zn in water. Afterwards, parameters for evaluation of the calibration model were calculated to select the combination of emission lines leading to the best accuracy (lowest values of PRESS-Predicted error sum of squares and RMSEP-Root means square error of prediction). Limits of detection (LOD) obtained using multiple lines were 7.1, 0.5, 4.4, 0.042, 3.3, 28 and 6.7 mu g L(-1) (n = 10) for Al, Cd. Co, Cr, Mn, Pb and Zn, respectively, in the presence of concomitants. On the other hand, the LOD established for the most intense emission line were 16. 0.7, 8.4, 0.074. 23, 26 and 9.6 mu g L(-1) (n = 10) for these same elements in the presence of concomitants. The accuracy of the developed procedure was demonstrated using water certified reference material. The use of multiple lines improved the sensitivity making feasible the determination of these analytes according to the target values required for the current environmental legislation for water samples and it was also demonstrated that measurements in multiple lines can also be employed as a tool to verify the accuracy of an analytical procedure in ICP DES. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeiro Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization.
Resumo:
The production of electronic equipment, such as computers and cell phones, and, consequently, batteries, has increased dramatically. One of the types of batteries whose production and consumption has increased in recent times is the nickel metal hydride (NiMH) battery. This study evaluated a hydrometallurgical method of recovery of rare earths and a simple method to obtain a solution rich in Ni-Co from spent NiMH batteries. The active materials from both electrodes were manually removed from the accumulators and leached. Several acid and basic solutions for the recovery of rare earths were evaluated. Results showed that more than 98 wt.% of the rare earths were recovered as sulfate salts by dissolution with sulfuric acid, followed by selective precipitation at pH 1.2 using sodium hydroxide. The complete process. precipitation at pH 1.2 followed by precipitation at pH 7, removed about 100 wt.% of iron and 70 wt.% of zinc from the leaching solution. Results were similar to those found in studies that used solvent extraction. This method is easy, economic, and does not pose environmental threats of solvent extraction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.
Resumo:
A total of 202 fish, representing 16 species, were collected during 2008 (March-October) in the Tanquan region of the Piracicaba River using nets. Flesh samples were collected and analyzed, using inductively coupled plasma-optical emission spectroscopy for Al, As, Cd, Co Cr, Cu, Mn, Mo, Ni, Ph, Se, Sn, Sr, and Zn. The results showed that the flesh of these fish all contained extremely high levels of Al and Sr, and moderately high levels of Cr, As, Zn, Ni. Mn and Pb. The metals were higher in these fish during rainy season, with fish collected during the months of March and October being the highest. In addition, the accumulation of metals was species-dependent. Cascudos (Hypostomus punctatus) and piranhas (Serrasalmus spilopleura) exhibited high levels of almost all of the metals, while curimbata (Prochilodus lineatus) had moderate levels. A few species, including pacu (Piaractus mesopotamicus) and dourado (Salminus maxillosus), had very low levels of most metals. The results show that the Piracicaba River Basin is widely contaminated with high levels of many toxic heavy metals, and that human consumption of some fish species is a human health concern. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A multilayer organic film containing poly(acrylic acid) and chitosan was fabricated on a metallic support by means of the layer-by-layer technique. This film was used as a template for calcium carbonate crystallization and presents two possible binding sites where the nucleation may be initiated, either calcium ions acting as counterions of the polyelectrolyte or those trapped in the template gel network formed by the polyelectrolyte chains. Calcium carbonate formation was carried out by carbon dioxide diffusion, where CO, was generated from ammonium carbonate decomposition. The CaCO3 nanocrystals obtained, formed a dense, homogeneous, and continuous film. Vaterite and calcite CaCO3 crystalline forms were detected. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Streams located in areas of sugarcane cultivation receive high concentrations of metal ions from soils of the adjacent areas causing accumulation of metals in the aquatic sediment. This impact results in environmental problems and leads to bioaccumulation of metal ions in aquatic organisms. In the present study, metal concentrations in different predatory insects were studied in streams near sugarcane cultivation and compared to reference sites. Possible utilisation of predatory insects as bioindicators of metal contamination due to sugarcane cultivation from 13 neotropical streams was evaluated. Ion concentrations of Al, Cd, Cr, Cu, Zn, Fe, and Mn in adult Belostomatidae (Hemiptera) and in larvae of Libellulidae (Odonata) were analysed. Nine streams are located in areas with sugarcane cultivation, without riparian vegetation (classified as impacted area) and four streams were located in forested areas (reference sites). Metal concentrations in insects were higher near sugarcane cultivations than in control sites. Cluster analysis, complemented by an ANOSIM test, clearly showed that these insect groups are good potential bioindicators of metal contamination in streams located in areas with sugarcane cultivation and can be used in monitoring programmes. We also conclude that Libellulidae appeared to accumulate higher concentrations of metals than Belostomatidae.
Resumo:
Background, aim and scope Although many recent studies have focused on sediment potential toxicity, few of them were performed in tropical shallow aquatic environments. Those places can suffer short-time variations, especially due to water column circulations generated by changes in temperature and wind. Rio Grande reservoir is such an example; aside from that, it suffers various anthropogenic impacts, despite its multiple uses. Materials and methods This work presents the first screening step for understanding sediment quality from Rio Grande reservoir by comparing metal content using three different sediment quality guidelines. We also aimed at verifying any possible spatial heterogeneity. Results and discussion We found spatial heterogeneity varying according to the specific metal. Results showed a tendency for metals to remain as insoluble as metal sulfide (potentially not bioavailable), since sulfide was in excess and sediment physical-chemical characteristics contribute to sulfide maintenance (low redox potential, neutral pH, low dissolved oxygen, and high organic matter content). On the other hand, metal concentrations were much higher than suggested by Canadian guidelines and regional background values, especially Cu, which raises the risk of metal remobilization in cases of water circulation. Further study steps include the temporal evaluation of AVS/SEM, a battery of bioassays and the characterization of organic compounds.
Resumo:
We investigated chronic incorporation of metals in individuals from poor families, living in a small, restrict and allegedly contaminated area in Sao Paulo city, the surroundings of the Guarapiranga dam, responsible for water supply to 25% of the city population. A total of 59 teeth from individuals 7 to 60 years old were collected. The average concentrations of Pb, Cd, Fe, Zn, Mn, Ni and Cr were determined with an Atomic Absorption Spectrophotometer. The concentrations of all metals as function of the individuals` age exhibited a remarkable similarity: peaks between 7 and 10 years and sharply decreasing at higher ages, which could be attributed to alimentary habits and persistence to metals exposure all along the individuals` life span. From all the measured metals, lead and cadmium were a matter of much more concern since their measured values are close to the upper limits of the world wide averages. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Charge density and magnetization density profiles of one-dimensional metals are investigated by two complementary many-body methods: numerically exact (Lanczos) diagonalization, and the Bethe-Ansatz local-density approximation with and without a simple self-interaction correction. Depending on the magnetization of the system, local approximations reproduce different Fourier components of the exact Friedel oscillations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Successful coupling of electrochemical preconcentration (EPC) to capillary electrophoresis (CE) with contactless conductivity detection (C(4)D) is reported for the first time. The EPC-CE interface comprises a dual glassy carbon electrode (GCE) block, a spacer and an upper block with flow inlet and outlet, pseudo-reference electrode and a fitting for the CE silica column, consisting of an orifice perpendicular to the surface of a glassy carbon electrode with a bushing inside to ensure a tight press fit. The end of the capillary in contact with the GCE is slant polished, thus defining a reproducible distance from the electrode surface to the column bore. First results with EPC-CE-C(4)D are very promising, as revealed by enrichment factors of two orders of magnitude for Tl, Cu, Pb and Cd ion peak area signals. Detection limits for 10 min deposition time fall around 20 nmol L(-1) with linear calibration curves over a wide range. Besides preconcentration, easy matrix exchange between accumulation and stripping/injection favors procedures like sample cleanup and optimization of pH, ionic strength and complexing power. This was demonstrated for highly saline samples by using a low conductivity buffer for stripping/injection to improve separation and promote field-enhanced sample stacking during electromigration along the capillary. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the presence of nutrients and toxic elements in coffees cultivated during the process of conversion, on organic agriculture, in southwest Bahia, Brazil. Levels of the nutrients and toxic elements were determined in samples of soils and coffee tissues from two transitional organic farms by atomic absorption spectrometry (FAAS). The metals in soil samples were extracted by Mehlich1 and USEPA-3050 procedures. Coffee samples from both farms presented relatively high levels of Cd, Zn and Cu (0.75,45.4 and 14.9 mu g g(-1). respectively), but were still below the limits specified by the Brazilian Food Legislation. The application of statistical methods showed that this finding can be attributed to the addition of high amounts of organic matter during the flowering tree period which can act on the bioavailability of metal ions in soils. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Coconut water is a natural isotonic, nutritive, and low-caloric drink. Preservation process is necessary to increase its shelf life outside the fruit and to improve commercialization. However, the influence of the conservation processes, antioxidant addition, maturation time, and soil where coconut is cultivated on the chemical composition of coconut water has had few arguments and studies. For these reasons, an evaluation of coconut waters (unprocessed and processed) was carried out using Ca, Cu, Fe, K, Mg, Mn, Na, Zn, chloride, sulfate, phosphate, malate, and ascorbate concentrations and chemometric tools. The quantitative determinations were performed by electrothermal atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and capillary electrophoresis. The results showed that Ca, K, and Zn concentrations did not present significant alterations between the samples. The ranges of Cu, Fe, Mg, Mn, PO (4) (3-) , and SO (4) (2-) concentrations were as follows: Cu (3.1-120 A mu g L(-1)), Fe (60-330 A mu g L(-1)), Mg (48-123 mg L(-1)), Mn (0.4-4.0 mg L(-1)), PO (4) (3-) (55-212 mg L(-1)), and SO (4) (2-) (19-136 mg L(-1)). The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to differentiate unprocessed and processed samples. Multivariated analysis (PCA and HCA) were compared through one-way analysis of variance with Tukey-Kramer multiple comparisons test, and p values less than 0.05 were considered to be significant.
Resumo:
In this work a series of tetrakis complexes C[Tm(acac)(4)] where C(+) = Li(+) Na(+) and K(+) countercations and acac = acetylacetonate ligand were synthesized and characterized for photoluminescence investigation The relevant aspect is that these complexes are water-free in the first coordination sphere The emission spectra of the tetrakis Tm(3+)-complexes present narrow bands characteristic of the (1)G(4)->(3)H(6) (479 nm) (1)G(4)->(3)F(4) (650 nm) and (1)G(4) ->(3)H(5) (779 nm) transitions of the Tm(3+) ion with the blue emission color at 479 nm as the most prominent one The lifetime values (tau) of the emitting (1)G(4) level of the C[Tm(acac)(4)] complexes were 344 360 and 400 ns for the Li(+) Na(+) and K(+) countercations respectively showing an increasing linear behavior versus the ionic radius of the alkaline ion An efficient intramolecular energy transfer process from the triplet state (T) of the ligands to the emitting (1)G(4) state of the Tm(3+) ion is observed This fact together with the absence of water molecules in first coordination sphere allows these tetrakis Tm(3+)-complexes to act as efficient blue light conversion molecular devices (c) 2010 Elsevier B V All rights reserved