8 resultados para Membrane Attack Complex
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The present study reports the synthesis of a novel compound with the formula [Ru(2)(aGLA)(4)Cl] according to elemental analyses data, referred to as Ru(2)GLA. The electronic spectra of Ru(2)GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru(2)GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and gamma-linolenic acid (GLA). The properties of Ru(2)GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru(2)GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru(2)GLA enters the cells and ICP-AES elemental analysis found all increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru(2)GLA (22 +/- 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru(2)GLA (44 +/- 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 +/- 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru(2)GLA exposed cells. The EC(50) for Ru(2)GLA decreased with increasing time of exposure from 285 mu M at 24h, 211 mu M at 48 h to 81 mu M at 72 h. In conclusion, Ru(2)GLA is a novel drug with anti proliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The ruthenium compound [Ru(2)Cl(Ibp)(4)] (or RuIbp) has been reported to cause significantly greater inhibition of C6 glioma cell proliferation than the parent HIbp. The present study determined the effects of 0-72 h exposure to RuIbp upon C6 cell cycle distribution, mitochondrial membrane potential, reactive species generation and mRNA and protein expression of E2F1, cyclin D1, c-myc, pRb, p21, p27, p53, Ku70, Ku80, Bax, Bcl2, cyclooxygenase 1 and 2 (COX1 and COX2). The most significant changes in mRNA and protein expression were seen for the cyclin-dependent kinase inhibitors p21 and p27 which were both increased (p<0.05). The marked decrease in mitochondrial membrane potential (p<0.01) and modest increase in apoptosis was accompanied by a decrease in anti-apoptotic Bcl2 expression and an increase in pro-apoptotic Bax expression (p<0.05). Interestingly, COX1 expression was increased in response to a significant loss of prostaglandin E(2) production (p<0.001), most likely due to the intracellular action of Ibp. Future studies will investigate the efficacy of this novel ruthenium-ibuprofen complex in human glioma cell lines in vitro and both rat and human glioma cells growing under orthotopic conditions in vivo. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The use of natural substances in health applications may be hampered by the difficulties in establishing the mechanisms of action, especially at molecular-level. The protein-polysaccharide complex extracted from the mushroom Agaricus blazei Murill, referred to as CAb, has been considered for treating various diseases with probable interaction with cell membranes. In this study, we investigate the interaction between CAb and a cell membrane model represented by a Langmuir monolayer of dimyristoyl phosphatidic acid (DMPA). CAb affects the structural properties of DMPA monolayers causing expansion and increasing compressibility. In addition, interaction with DMPA polar heads led to neutralization of the electrical double layer, yielding a zero surface potential at large areas per molecule. CAb remained at the interface even at high surface pressures, which allowed transfer of Langmuir-Blodgett (LB) films onto solid supports with the CAb-DMPA mixture. The mass transferred, according to quartz crystal microbalance (QCM) measurements, increased linearly with the number of deposited layers. With UV-vis absorption, fluorescence and FTIR spectroscopies, we confirmed that the LB films contain polysaccharides, proteins and DMPA. Therefore, the CAb biological action must be attributed not only to polysaccharides but also to proteins in the complex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.
Resumo:
A cDNA coding for a Tenebrio molitor midgut protein named peritrophic membrane ancillary protein (PMAP) was cloned and sequenced. The complete cDNA codes for a protein of 595 amino acids with six insect-allergen-related-repeats that may be grouped in A (predicted globular)- and B (predicted nonglobular)-types forming an ABABAB structure. The PMAP-cDNA was expressed in Pichia pastoris and the recombinant protein (64 kDa) was purified to homogeneity and used to raise antibodies in rabbits. The specific antibody detected PMAP peptides (22 kDa) in the anterior and middle midgut tissue, luminal contents, peritrophic membrane and feces. These peptides derive from PMAP, as supported by mass spectrometry, and resemble those formed by the in vitro action of trypsin on recombinant PMAP. Both in vitro and in vivo PMAP processing seem to occur by attack of trypsin to susceptible bonds in the coils predicted to link AB pairs, thus releasing the putative functional AB structures. The AB-domain structure of PMAP is found in homologous proteins from several insect orders, except lepidopterans that have the apparently derived protein known as nitrile-specifier protein. Immunocytolocalization shows that PMAP is secreted by exocytosis and becomes entrapped in the glycocalyx, before being released into midgut contents. Circumstantial evidence suggests that PMAP-like proteins have a role in peritrophic membrane type 2 formation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The various stages of the interaction between the detergent Triton X-100 (TTX-100) and membranes of whole red blood cells (RBC) were investigated in a broad range of detergent concentrations. The interaction was monitored by RBC hemolysis-assessed by release of intracellular hemoglobin (Hb) and inorganic phosphate- and by analysis of EPR spectra of a fatty acid spin probe intercalated in whole RBC suspensions, as well as pellets and supernatants obtained upon centrifugation of detergent-treated cells. Hemolysis finished at ca. 0.9 mM TTX-100. Spectral analysis and calculation of order parameters (S) indicated that a complex sequence of events takes place, and allowed the characterization of various structures formed in the different stages of detergent-membrane interaction. Upon reaching the end of cell lysis, essentially no pellet was detected, the remaining EPR signal being found almost entirely in the supernatants. Calculated order parameters revealed that whole RBC suspensions, pellets, and supernatants possessed a similar degree of molecular packing, which decreased to a small extent up to 2.5 mM detergent. Between 3.2 and 10 mM TTX-100, a steep decrease in S was observed for both whole RBC suspensions and supernatants. Above 10 mM detergent, S decreased in a less pronounced manner and the EPR spectra approached that of pure TTX-100 micelles. The data were interpreted in terms of the following events: at the lower detergent concentrations, an increase in membrane permeability occurs: the end of hemolysis coincides with the lack of pellet upon centrifugation. Up to 2.5 mM TTX-100 the supernatants consist of a (very likely) heterogeneous population of membrane fragments with molecular packing similar to that of whole cells. As the detergent concentration increases, mixed micelles are formed containing lipid and/or protein, approaching the packing found in pure TTX-100 micelles. This analysis is in agreement with the models proposed by Lasch (Biochim. Biophys Acta 1241 (1995) 269-292) and by Le Maire and coworkers (Biochim. Biophys. Acta 1508 (2000) 86-111). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.
Resumo:
A large majority of the 1000-1500 proteins in the mitochondria are encoded by the nuclear genome, and therefore, they are translated in the cytosol in the form and contain signals to enable the import of proteins into the organelle. The TOM complex is the major translocase of the outer membrane responsible for preprotein translocation. It consists of a general import pore complex and two membrane import receptors, Tom20 and Tom70. Tom70 contains a characteristic TPR domain, which is a docking site for the Hsp70 and Hsp90 chaperones. These chaperones are involved in protecting cytosolic preproteins from aggregation and then in delivering them to the TOM complex. Although highly significant, many aspects of the interaction between Tom70 and Hsp90 are still uncertain. Thus, we used biophysical tools to study the interaction between the C-terminal domain of Hsp90 (C-Hsp90), which contains the EEVD motif that binds to TPR domains, and the cytosolic fragment of Tom70. The results indicate a stoichiometry of binding of one monomer of Tom70 per dimer of C-Hsp90 with a K(D) of 360 30 nM, and the stoichiometry and thermodynamic parameters obtained suggested that Tom70 presents a different mechanism of interaction with Hsp90 when compared with other TPR proteins investigated. (C) 2011 Elsevier Inc. All rights reserved.