110 resultados para Mechanism of opening of ridge
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer`s disease, on currents elicited by activation of rat alpha(3)beta(4) nAChR heterologously expressed in KX alpha(3)beta(4)R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 +/- 0.2 mu M and 4.3 +/- 1.3 for the channel opening equilibrium constant, Phi(-1). Experiments were performed to investigate whether tacrine is able to activate the alpha(3)beta(4) nAChR. Tacrine did not activate whole-cell currents in KX alpha(3)beta(4)R2 cells but inhibited receptor activity at submicromolar concentration. Dose response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 mu M. The increase of Phi(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.
Resumo:
Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.5-fold TIMP-1 hydrolysis by HNE. The kinetic parameters of this reaction were monitored with the aid of a FRET-peptide substrate that mimics the TIMP-1 cleavage site in pre-steady-state conditionsby using a stopped-flow fluorescence system. The hydrolysis of the FRET-peptide substrate by HNE exhibits a pre-steady-state burst phase followed by a linear, steady-state pseudo-first-order reaction. The HNE acylation step (k(2)=21 +/- 1 s(-1)) was much higher than the HNE deacylation step (k(3)=0.57 +/- 0.05 s(-1)). The presence of heparin induces a dramatic effect in the pre-steady-state behavior of HNE. Heparin induces transient lag phase kinetics in HNE cleavage of the FRET-peptide substrate. The pre-steady-state analysis revealed that heparin affects all steps of the reaction through enhancing the ES complex concentration, increasing k(1) 2.4-fold and reducing k(-1) 3.1-fold. Heparin also promotes a 7.8-fold decrease in the k(2) value, whereas the k(3) value in the presence of heparin was increased 58-fold. These results clearly show that heparin binding accelerates deacylation and slows down acylation. Heparin shifts the HNE pH activity profile to the right, allowing HNE to be active at alkaline pH. Molecular docking and kinetic analysis suggest that heparin induces conformational changes in HNE structure. Here, we are showing for the first time that heparin is able to accelerate the hydrolysis of TIMP-1 by HNE. The degradation of TIMP-1is associated to important physiopathological states involving excessive activation of MMPs.
Resumo:
Precise quasielastic and alpha-transfer excitation functions, at theta(lab) = 161 degrees, have been measured at energies near the Coulomb barrier for the (16)O + (63)Cu system. This is the first time reported quasielastic barrier distribution for a medium odd-A nucleus target deduced from the data. Additional elastic scattering angular distributions data available in the literature for this system were also used in the investigation of the role of several individual channels in the reaction dynamics, by comparing the data with free-parameter coupled-channels calculations. In order to do so, the nucleus-nucleus bare potential has a double-folding potential as the real component and only a very short-range imaginary potential. The quasielastic barrier distribution has been shown to be a powerful tool in this analysis at the barrier region. A high collectivity of the (63)Cu was observed, mainly due to the strong influence of its 5/2-and 7/2-states on all reaction channels investigated. A striking influence of the reorientation of the ground-state target-spin on the elastic cross sections, taken at backward angles, was also observed.
Resumo:
The dynamics and mechanism of migration of a vacancy point defect in a two-dimensional (2D) colloidal crystal are studied using numerical simulations. We find that the migration of a vacancy is always realized by topology switching between its different configurations. From the temperature dependence of the topology switch frequencies, we obtain the activation energies for possible topology transitions associated with the vacancy diffusion in the 2D crystal. (C) 2011 American Institute of Physics. [doi:10.1063/1.3615287]
Resumo:
Some properties of the annular billiard under the presence of weak dissipation are studied. We show, in a dissipative system, that the average energy of a particle acquires higher values than its average energy of the conservative case. The creation of attractors, associated with a chaotic dynamics in the conservative regime, both in appropriated regions of the phase space, constitute a generic mechanism to increase the average energy of dynamical systems.
Resumo:
Background: The parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis, which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group has demonstrated that heme crystallization into hemozoin (Hz) within the S. mansoni gut is a major heme detoxification route with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we investigated the effects of three antimalarial compounds, quinine (QN), quinidine (QND) and quinacrine (QCR) in a murine schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches. Methodology/Principal Findings: Treatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections of QN, and QND (75 mg/kg/day) from the 11(th) to 17(th) day after infection caused significant decreases in worm burden (39%-61%) and egg production (42%-98%). Hz formation was significantly inhibited (40%-65%) in female worms recovered from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms. Conclusions: The overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action of these compounds and points out the heme crystallization process as a valid chemotherapeutic target to treat schistosomiasis.
Resumo:
Early reports stated that Au was a catalyst of choice for the BOR because it would yield a near complete faradaic efficiency. However, it has recently been suggested that gold could yield to some extent the heterogeneous hydrolysis of BH(4)(-),therefore lowering the electron count per BH(4)(-), especially at low potential. Actually, the blur will exist regarding the BOR mechanism on Au as long as no physical proof regarding the reaction intermediates is not put forward. In that frame, in situ physical techniques like FTIR exhibit some interest to study the BOR. Consequently, in situ infrared reflectance spectroscopy measurements (SPAIRS technique) have been performed in 1 M NaOH/1 M NaBH(4) on a gold electrode with the aim to detect the intermediate species. We monitored several bands in B-H ((nu) over bar similar to 1180,1080 and 972 cm(-1)) and B-O bond regions ((nu) over bar =1325 and similar to 1425cm(-1)), which appear sequentially as a function of the electrode polarization. These absorption bands are assigned to BH(3), BH(2) and BO(2)(-) species. At the light of the experimental results, possible initial elementary steps of the BOR on gold electrode have been proposed and discussed according to the relevant literature data.
Resumo:
In this study four irons were casted with different chromium and vanadium contents: 2.66% Cr, 5.01% Cr, 2.51% V and 5.19% V. Their microstructure is composed of: ledeburite, graphite and M(3)C carbides (cementite). Pin-abrasion tests were carried out using fixed alumina abrasive grains at different loads: 1, 2, 4.6 and 10 N. The wear surface and the abrasive paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results reveal that the mass loss increased with the load increase, and the effect of the percentage of chromium on mass loss is inverted when the load is increased from 4.6 to 10 N; for 4.6 N the mass loss decreased when the chromium percentage was increased from 2.66% to 5.01%. Nevertheless, for 10 N the mass loss increased when the chromium percentage was increased. The worn surfaces of the materials tested at 1 N show microcutting caused by the abrasive tip that produces continuous microchips. The worn surfaces and the abrasive paper tested at 10 N show continuous microchips and brittle debris. The results show that high pressures produce a brittle wear mechanism and low pressures produce a more ductile wear micromechanism, for this, the applied pressure defines the dependence between the wear resistance and wear micromechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, the effect of cerium (IV) ammonium nitrate (CAN) addition on the polymerization of bis-[triethoxysilyl]ethane (BTSE) film applied on carbon steel was studied. The electrochemical characterization of the films was carried out in 0.1 mol L(-1) NaCl solution by open-circuit potential measurements, anodic and cathodic polarization curves and electrochemical impedance spectroscopy (EIS). Morphological and chemical characterization were performed by atomic force microscopy (AFM), contact angle measurements, infrared-spectroscopy, nuclear magnetic resonance and thermogravimetric analysis. The results have clearly shown the improvement on the protective properties of the Ce(4+) modified film as a consequence of the formation of a more uniform and densely reticulated silane film. A mechanism is proposed to explain the accelerating role of Ce(4+) ions on the cross-linking of the silane layer. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the present work was to characterize the egg production of Loxopagurus loxochelis. A total of 71 ovigerous females were obtained, 28% of which were simultaneously incubating eggs at different developmental stages. This phenomenon can be the result of incomplete fertilization, or may represent a rapid gonadal cycle by this species in this area, which is, to our understanding, the best explanation of this phenomenon. Egg volume decreased 25.6% during the incubation period. The reproductive output based on dry and wet weight was 6.8 and 19.3%, respectively. Water was the prevailing component of the eggs, representing 86.0% of the total weight at initial stage, increasing to 95.1% at the final stage. Ash content increased at the same time as a decrease in the organic content occurred, indicating the consumption of yolk and absorption of salts from the water medium. In conclusion, we hypothesized that this population has the capacity to copulate and deposit another brood even before the release of the larvae from the previous one, intensifying the reproductive effort of these hermit crabs as a strategy of adaptation in a region considered the northern limit of the geographical distribution of this species.
Resumo:
Objectives The aim was to test the potential use of an extract of Mikania laevigata (popularly known in Brazil as guaco), made from leaves harvested in different months of the year, oil neutrophil migration after all inflammatory Stimulus and investigate the underlying molecular mechanisms. Methods We examined the effect of guaco on vascular permeability and leucocyte function in carrageenan-induced peritonitis in mice. Key findings Our results demonstrated that guaco extract administered subcutaneously (3 mg/kg) decreased the vascular permeability and also leucocyte rolling and adhesion to the inflamed tissues by a mechanism dependent on nitric oxide. Specifically, inhibitors of nitric oxide synthase remarkably abrogated the guaco extract-mediated suppression of neutrophil migration to the inflammatory site. In addition, guaco extract-mediated suppression of neutrophil migration appeared to be dependent on the production of the cytokines interleukin-1 beta and tumour necrosis factor-alpha. One of the major constituents of the guaco extract, coumarin, was able to inhibit the neutrophil migration towards the inflammatory focus. Conclusions In conclusion the anti-inflammatory effect induced by guaco extract may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.
Resumo:
Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Muscarinic (mAChRs) and nicotinic acetylcholine receptors (nAChRs) are involved in various physiological processes, including neuronal development. We provide evidence for expression of functional nicotinic and muscarinic receptors during differentiation of P19 carcinoma embryonic cells, as an in vitro model of early neurogenesis. We have detected expression and activity alpha(2)-alpha(7), beta(2), beta(4) nAChR and M1-M5 mAChR subtypes during neuronal differentiation. Nicotinic alpha(3) and beta(2) mRNA transcription was induced by addition of retinoic acid to P19 cells. Gene expression Of alpha(2), alpha(4)-alpha(7), beta(4) nAChR subunits decreased during initial differentiation and increased again when P19 cells underwent final maturation. Receptor response in terms of nicotinic agonist-evoked Ca2+, flux was observed in embryonic and neuronal-differentiated cells. Muscarinic receptor response, merely present in undifferentiated P19 cells, increased during neuronal differentiation. The nAChR-induced elevation of intracellular calcium ([Ca2+](i)) response in undifferentiated cells was due to Ca2+ influx. In differentiated P19 neurons the nAChR-induced [Ca2+](i) response was reduced following pretreatment with ryanodine, while the mAChR-induced response was unaffected indicating the contribution of Ca2+ release from ryanodine-sensitive stores to nAChR- but not mAChR-mediated Ca2+ responses. The presence of functional nAChRs in embryonic cells suggests that these receptors are involved in triggering Ca2+ waves during initial neuronal differentiation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Many potent antimicrobial peptides also present hemolytic activity, an undesired collateral effect for the therapeutic application. Unlike other mastoparan peptides, Polybia-MP1 (IDWKKLLDAAKQIL), obtained from the venom of the social wasp Polybia paulista, is highly selective of bacterial cells. The study of its mechanism of action demonstrated that it permeates vesicles at a greater rate of leakage on the anionic over the zwitterionic, impaired by the presence of cholesterol or cardiolipin; its lytic activity is characterized by a threshold peptide to lipid molar ratio that depends on the phospholipid composition of the vesicles. At these particular threshold concentrations, the apparent average pore number is distinctive between anionic and zwitterionic vesicles, suggesting that pores are similarly formed depending on the ionic character of the bilayer. To prospect the molecular reasons for the strengthened selectivity in Polybia-MP1 and its absence in Mastoparan-X, MD simulations were carried out. Both peptides presented amphipathic alpha-helical structures, as previously observed in Circular Dichroism spectra, with important differences in the extension and stability of the helix; their backbone solvation analysis also indicate a different profile, suggesting that the selectivity of Polybia-MP1 is a consequence of the distribution of the charged and polar residues along the peptide helix, and on how the solvent molecules orient themselves according to these electrostatic interactions. We suggest that the lack of hemolytic activity of Polybia-MP1 is due to the presence and position of Asp residues that enable the equilibrium of electrostatic interactions and favor the preference for the more hydrophilic environment.
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide`s primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.