90 resultados para Maximal Aerobic Speed
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background The allele threonine (T) of the angiotensinogen has been associated with ventricular hypertrophy in hypertensive patients and soccer players. However, the long-term effect of physical exercise in healthy athletes carrying the T allele remains unknown. We investigated the influence of methionine M or T allele of the angiotensinogen and D or I allele of the angiotensin-converting enzyme on left-ventricular mass index (LVMI) and maximal aerobic capacity in young healthy individuals after long-term physical exercise training. Design Prospective clinical trial. Methods Eighty-three policemen aged between 20 and 35 years (mean +/- SD 26 +/- 4.5 years) were genotyped for the M235T gene angiotensinogen polymorphism (TT, n=25; MM/MT, n=58) and angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism (11, n=18; DD/DI, n=65). Left-ventricular morphology was evaluated by echocardiography and maximal aerobic capacity (VO(2peak)) by cardiopulmonary exercise test before and after 17 weeks of exercise training (50-80% VO(2peak)). Results Baseline VO(2peak) and LVMI were similar between TT and MM/MT groups, and II and DD/DI groups. Exercise training increased significantly and similarly VO(2peak) in homozygous TT and MM/MT individuals, and homozygous II and DD/DI individuals. In addition, exercise training increased significantly LVMI in TT and MM/MT individuals (76.5 +/- 3 vs. 86.7 +/- 4, P=0.00001 and 76.2 +/- 2 vs. 81.4 +/- 2, P=0.00001, respectively), and II and DD/DI individuals (777 +/- 4 vs. 81.5 +/- 4, P=0.0001 and 76 +/- 2 vs. 83.5 +/- 2, P=0.0001, respectively). However, LVMI I in TT individuals was significantly greater than in MM/MT individuals (P=0.04). LVMI was not different between 11 and DD/DI individuals. Conclusion Left-ventricular hypertrophy caused by exercise training is exacerbated in homozygous TT individuals with angiotensinogen polymorphism. Eur J Cardiovasc Prev Rehabil 16:487-492 (C) 2009 The European Society of Cardiology
Resumo:
Background: Falls are one of the greatest concerns among the elderly. Among a number of strategies proposed to reduce the risk of falls, improving muscle strength has been applied as a successful preventive strategy. Although it has been suggested as a relevant strategy, no studies have analyzed how muscle strength improvements affect the gait pattern. The aim of this study was to determine the effects of a lower limb strength training program on gait kinematics parameters associated with the risk of falls in elderly women. Methods: Twenty seven elderly women were assigned in a balance and randomized order into an experimental (n = 14: age = 61.1 (4.3) years, BMI = 26.4 (2.8) kg m(-2)) and a control (n = 13; age = 61.6 (6.6) years; BMI = 25.9 (3.0) kg m(-2)) group. The EG performed lower limb strength training during 12 weeks (3 days per week), being training load increased weekly. Findings: Primary outcomes were gait kinematics parameters and maximum voluntary isometric contractions at pre- and post-training period. Secondary outcomes were training load improvement weekly and one repetition maximum every two weeks. The I maximal repetition increment ranged from 32% to 97% and was the best predictor of changes in gait parameters (spatial, temporal and angular variables) after training for the experimental group. Z-score analysis revealed that the strength training was effective in reversing age-related changes in gait speed, stride length, cadence and toe clearance, approaching the elderly to reference values for healthy young women. Interpretation: Lower limb strength training improves fall-related gait kinematic parameters. Thus, strength training programs should be recommended to the elderly women in order to change their gait pattern towards young adults. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
P>1. Baroreceptors regulate moment-to-moment blood pressure (BP) variations, but their long-term effect on the cardiovascular system remains unclear. Baroreceptor deficit accompanying hypertension contributes to increased BP variability (BPV) and sympathetic activity, whereas exercise training has been associated with an improvement in these baroreflex-mediated changes. The aim of the present study was to evaluate the autonomic, haemodynamic and cardiac morphofunctional effects of long-term sinoaortic baroreceptor denervation (SAD) in trained and sedentary spontaneously hypertensive rats (SHR). 2. Rats were subjected to SAD or sham surgery and were then further divided into sedentary and trained groups. Exercise training was performed on a treadmill (five times per week, 50-70% maximal running speed). All groups were studied after 10 weeks. 3. Sinoaortic baroreceptor denervation in SHR had no effect on basal heart rate (HR) or BP, but did augment BPV, impairing the cardiac function associated with increased cardiac hypertrophy and collagen deposition. Exercise training reduced BP and HR, re-established baroreflex sensitivity and improved both HR variability and BPV. However, SAD in trained SHR blunted all these improvements. Moreover, the systolic and diastolic hypertensive dysfunction, reduced left ventricular chamber diameter and increased cardiac collagen deposition seen in SHR were improved after the training protocol. These benefits were attenuated in trained SAD SHR. 4. In conclusion, the present study has demonstrated that the arterial baroreflex mediates cardiac disturbances associated with hypertension and is crucial for the beneficial cardiovascular morphofunctional and autonomic adaptations induced by chronic exercise in hypertension.
Resumo:
This study compared measurements of upper body aerobic fitness in elite (EC; n = 7) and intermediate rock climbers (IC; n = 7), and a control group (C; n = 7). Subjects underwent an upper limb incremental test on hand cycle ergometer, with increments of 23 W.min(-1), until exhaustion. Ventilation (VE) data were smoothed to 10 s averages and plotted against time for the visual determination of the first (VT1) and second (VT2) ventilatory thresholds. Peak power output was not different among groups [EC = 130.9 (+/- 11.8) W; IC = 122.1 (+/- 28.4) W; C = 115.4 (+/- 15.1) W], but time to exhaustion was significantly higher in EC than IC and C. VO(2PEAK) was significantly higher in EC [36.8 (+/- 5.7) mL.kg(-1).min(-1)] and IC [35.5 (+/- 5.2) mL.kg(-1).min(-1)] than C [28.8 (+/- 5.0) mL.kg(-1).min(-1)], but there was no difference between EC and IC. VT1 was significantly higher in EC than C [EC = 69.0 (+/- 9.4) W; IC = 62.4 (+/- 13.0) W; C = 52.1 (+/- 11.8) W], but no significant difference was observed in VT2 [EC = 103.5 (+/- 18.8) W; IC = 92.0 (+/- 22.0) W; C = 85.6 (+/- 19.7) W]. These results show that elite indoor rock climbers elicit higher aerobic fitness profile than control subjects when measured with an upper body test.
Resumo:
Purpose: The aim of this study was to verify the influence of aerobic fitness (VO(2)max) on internal training loads, as measured by the session rating of perceived exertion (session-RPE) method. Methods: Nine male professional outfield futsal players were monitored for 4 wk of the in-season period with regards to the weekly accumulated session-RPE, while participating in the same training sessions. Single-session-RPE was obtained from the product of a 10-point RPE scale and the duration of exercise. Maximal oxygen consumption was determined during an incremental treadmill test. Results: The average training load throughout the 4 wk period varied between 2,876 and 5,035 arbitrary units. Technical-tactical sessions were the predominant source of loading. There was a significant correlation between VO(2)max (59.6 +/- 2.5 mL.kg(-1).min(-1)) and overall training load accumulated over the total period (r = -0.75). Conclusions: The VO(2)max plays a key role in determining the magnitude of an individual's perceived exertion during futsal training sessions.
Resumo:
This study aimed to compare maximal fat oxidation rate parameters between moderate-and low-performance runners. Eighteen runners performed an incremental treadmill test to estimate individual maximal fat oxidation rate (Fat(max)) based on gases measures and a 10,000-m run on a track. The subjects were then divided into a low and moderate performance group using two different criteria: 10,000-m time and VO(2)max values. When groups were divided using 10,000-m time, there was no significant difference in Fat(max) (0.41 +/- 0.16 and 0.27 +/- 0.12 g.min(-1), p = 0.07) or in the exercise intensity that elicited Fat(max) (59.9 +/- 16.5 and 68.7 +/- 10.3 % (V) over dotO(2max), p = 0.23) between the moderate and low performance groups, respectively (p > 0.05). When groups were divided using VO(2max) values, Fat(max) was significantly lower in the low VO(2max) group than in the high VO(2max) group (0.29 +/- 0.10 and 0.47 +/- 0.17 g.min(-1), respectively, p < 0.05) but the intensity that elicited Fat(max) did not differ between groups (64.4 +/- 14.9 and 61.6 +/- 15.4 % VO(2max)). Fat(max) or % VO(2max) that elicited Fat(max) was not associated with 10,000 m time. The only variable associated with 10,000-m running performance was % VO(2max) used during the run (p < 0.01). In conclusion, the criteria used for the division of groups according to training status might influence the identification of differences in Fat(max) or in the intensity that elicits Fat(max).
Resumo:
Background Peripheral muscle strength and endurance are decreased in patients with chronic pulmonary diseases and seem to contribute to patients' exercise intolerance. However, the authors are not aware of any studies evaluating peripheral muscle function in children with asthma. It seems to be implied that children with asthma have lower aerobic fitness, but there are limited studies comparing the aerobic capacity of children with and without asthma. The present study aimed to evaluate muscle strength and endurance in children with persistent asthma and their association with aerobic capacity and inhaled corticosteroid consumption. Methods Forty children with mild persistent asthma (MPA) or severe persistent asthma (SPA) (N=20 each) and 20 children without asthma (control group) were evaluated. Upper (pectoralis and latissimus dorsi) and lower (quadriceps) muscle strength and endurance were assessed, and cardiopulmonary exercise testing was performed. Inhaled corticosteroid consumption during the last 6 and 24 months was also quantified. Results Children with SPA presented a reduction in peak oxygen consumption (VO(2)) (28.2 +/- 8.1 vs 34.7 +/- 6.9 ml/kg/min; p<0.01) and quadriceps endurance (43.1 +/- 6.7 vs 80.9 +/- 11.9 repetitions; p<0.05) compared with the control group, but not the MPA group (31.5 +/- 6.1 ml/kg/min and 56.7 +/- 47.7 repetitions respectively; p>0.05). Maximal upper and lower muscle strength was preserved in children with both mild and severe asthma (p>0.05). Finally, the authors observed that lower muscle endurance weakness was not associated with reductions in either peak VO(2) (r=0.22, p>0.05) or corticosteroid consumption (r=-0.31, p>0.05) in children with asthma. Conclusion The findings suggest that cardiopulmonary exercise and lower limb muscle endurance should be a priority during physical training programs for children with severe asthma.
Resumo:
Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.
Resumo:
Samogin Lopes, FA, Menegon, EM, Franchini, E, Tricoli, V, and de M. Bertuzzi, RC. Is acute static stretching able to reduce the time to exhaustion at power output corresponding to maximal oxygen uptake? J Strength Cond Res 24(6): 1650-1656, 2010-This study analyzed the effect of an acute static stretching bout on the time to exhaustion (T(lim)) at power output corresponding to (V) over dotO(2)max. Eleven physically active male subjects (age 22.3 +/- 2.8 years, (V) over dotO(2)max 2.7 +/- 0.5 L . min(-1)) completed an incremental cycle ergometer test, 2 muscle strength tests, and 2 maximal tests to exhaustion at power output corresponding to (V) over dotO(2)max with and without a previous static stretching bout. The T(lim) was not significantly affected by the static stretching (164 +/- 28 vs. 150 +/- 26 seconds with and without stretching, respectively, p = 0.09), but the time to reach (V) over dotO(2)max (118 +/- 22 vs. 102 +/- 25 seconds), blood-lactate accumulation immediately after exercise (10.7 +/- 2.9 vs. 8.0 +/- 1.7 mmol . L(-1)), and oxygen deficit (2.4 +/- 0.9 vs. 2.1 +/- 0.7 L) were significantly reduced (p <= 0.02). Thus, an acute static stretching bout did not reduce T(lim) at power output corresponding to (V) over dotO(2)max possibly by accelerating aerobic metabolism activation at the beginning of exercise. These results suggest that coaches and practitioners involved with aerobic dependent activities may use static stretching as part of their warm-up routines without fear of diminishing high-intensity aerobic exercise performance.
Resumo:
Santhiago, V, da Silva, ASR, Papoti, M, and Gobatto, CA. Responses of hematological parameters and aerobic performance of elite men and women swimmers during a 14-week training program. J Strength Cond Res 23(4): 1097-1105, 2009-The main purpose of the present investigation was to verify the responses of hematological parameters in men and women competitive swimmers during a 14-week training program. Twenty-three Olympic and international athletes were evaluated 4 times during the experiment: at the beginning of the endurance training phase (T1), at the end of the endurance training phase (T2), at the end of the quality phases (T3), and at the end of the taper period (T4). On the first day at 8:00 AM, each swimmer had a blood sample taken for the determination of hematological parameters. At 3:00 PM, the athletes had their aerobic performance measured by anaerobic threshold. On the second day at 8: 00 AM, the swimmers had their aerobic performance measured by critical velocity. Hematocrit and mean corpuscular volume diminished (p <= 0.05) from T1 to T2 (men: 5.8 and 7.2%; women: 11.6 and 6.8%), and increased (p <= 0.05) from T2 to T3 (men: 7.2 and 6.0%; women: 7.4 and 5.2%). These results were related to the plasma volume changes of the athletes. However, these alterations do not seem to affect the swimmers` aerobic performance. For practical applications, time-trial performance is better than aerobic performance (i.e., anaerobic threshold and critical velocity) for monitoring training adaptations.
Resumo:
Severe obesity has been associated with adverse effects on physical capacity. In a prospective study, the aerobic capacity of severely obese patients was measured in order to observe the physiological response to weight loss from bariatric surgery. Sixty-five consecutive patients (40.4 +/- 8.4 years old; 93.8% female; body mass index = 49.4 +/- 5.4 kg/m(2)) were evaluated before bariatric surgery and then 6 and 12 months after surgery. Aerobic capacity was assessed with a scientific treadmill to measure maximal oxygen consumption (VO(2max)), heart rate, blood pressure, time on the treadmill, and distance walked (modified Bruce test). For the three observational periods, VO(2max) was 25.4 +/- 9.3, 29.8 +/- 8.1, and 36.7 +/- 8.3 ml/kg/min; time on the treadmill was 5.4 +/- 1.4, 6.4 +/- 1.6, and 8.8 +/- 1.0 min; and distance walked was 401.8 +/- 139.1, 513.4 +/- 159.9, and 690.5 +/- 76.2 m. For these variables, significant results (p = 0.0000) were observed for the two postoperative periods in relation to the preoperative period. Severely obese individuals increased their aerobic capacity after successful bariatric surgery. The data also suggests that a positive and progressive relationship between weight loss and improvement in fitness as a moderate loss of weight 6 months after surgery already showed some benefit and an additional reduction in weight was associated with a better performance in the aerobic capacity tests at the 12-month follow-up.
Resumo:
Emerging data reveal that oral estrogen therapy can increase clinic blood pressure (BP) in postmenopausal women; however, it is important to establish its effects on ambulatory BP, which is a better predictor for target-organ damage. Besides estrogen therapy, aerobic training is widely recommended for post-menopausal women, and it can decrease ambulatory BP levels. This study was designed to evaluate the effect of aerobic training and estrogen therapy on the ambulatory BP of post-menopausal women. Forty seven healthy hysterectomized women were randomly divided (in a double-blind manner) into 4 groups: placebo-control (PLA-CO = 12), estrogen therapy-control (ET-CO = 14), placebo-aerobic training (PLA-AT = 12), and estrogen therapy-aerobic training (ET-AT = 09). The ET groups received estradiol valerate (1 mg/day) and the AT groups performed cycle ergometer, 3x/week at moderate intensity. Hormonal status (blood analysis), maximal cardiopulmonary exercise test (VO(2) peak) and ambulatory BP (24-h, daytime and nighttime) was evaluated before and 6 months after interventions. A significant increase in VO(2) peak was observed only in women who participated in aerobic training groups (+4.6 +/- 1.0 ml kg(-1) min(-1), P=0.00). Follicle-stimulating hormone was a significant decreased in the ET groups (-18.65 +/- 5.19 pg/ml, P=0.00), and it was accompanied by an increase in circulating estrogen (56.1 +/- 6.6 pg/ml). A significant increase was observed in the ET groups for daytime (P=0.01) and nighttime systolic BP (P=0.01), as well as nighttime diastolic BP (P = 0.02). However, daytime diastolic BP was increased only in the ET-CO group (+3.4 +/- 1.2 mmHg, P=0.04), and did not change in any other groups. No significant effect was found in ambulatory heart rate. In conclusion, aerobic training abolished the increase of daytime ambulatory BP induced by estrogen therapy in hysterectomized, healthy, normotensive and postmenopausal women. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this study, we analyzed the effect of aerobic exercise training (AET) and of a single bout of exercise on plasma oxidative stress and on antioxidant defenses in type 2 diabetes mellitus (DM) and in healthy control subjects (C). DM and C did not differ regarding triglycerides, high-density lipoprotein cholesterol (HDL-c), insulin, and HOMA index at baseline and after AET. To measure the lag time for low-density lipoprotein (LDL) oxidation (LAG) and the maximal rate of conjugated diene formation (MCD), participants` plasma HDL(2) and HDL(3) were incubated with LDL from pooled healthy donors` plasma. In the presence of HDL(3), both LAG and MCD were similar in C and DM, but only in DM did AET improve LAG and reduce MCD. In the presence of HDL(2), the lower baseline LAG in DM equaled C after AET. MCD was unchanged in DM after AET, but was lower than C only after AET. Furthermore, after AET plasma thiobarbituric acid-reactive substances were reduced only in DM subjects. Despite not modifying the total plasma antioxidant status and serum paraoxonase-1 activity in both groups, AET lowered the plasma lipid peroxides, corrected the HDL(2), and improved the HDL(3) antioxidant efficiency in DM independent of the changes in blood glucose, insulin, and plasma HDL concentration and composition.
Resumo:
Purpose: In this study we analyzed the role played by aerobic exercise training in the plasma lipoprotein profile, prebeta 1-HDL concentration, and in the in vitro HDL3 ability to remove cholesterol from macrophages and inhibit LDL oxidation in type 2 diabetes mellitus (DM) patients and control subjects, in the fasting and postprandial states. Methods: Healthy controls (HTC, N = 11; 1 M/10 F) and subjects with type 2 diabetes mellitus (DMT, N = 11; 3M/ 8F) were engaged in a 4-month aerobic training program, and compared with a group of sedentary subjects with type 2 diabetes mellitus (DMS, N = 10; 4 M/6 F). All groups were submitted to an oral fat load test to analyze all parameters, both at the beginning of the investigation protocol (basal) and at the end of the study period (final). Results: Exercising did not modify body weight, BMI, plasma concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides (TG), glucose, insulin, or HOMA-IR, but it reduced the waist circumference. The HDL3 Composition did not change, and its ability to remove cell cholesterol was unaltered by aerobic training. In DMT but not in HTC, aerobic training improved 15% the HDL3 protective effect against LDL maximal oxidation rate in the fasting state, and reduced 24% the plasma prebeta 1-HDL concentration in the postprandial state, suggesting an enhanced prebeta 1-HDL conversion into larger, more mature HDL particles. In this regard, regular aerobic exercise enriched HDL2 with TG in the fasting and postprandial states in HTC and in the fasting phase in DMT. Conclusion: Our results show that aerobic exercise training in diabetes mellitus improves the HDL efficiency against LDL oxidation and favors HDL maturation. These findings were independent of changes in insulin resistance and of the rise of plasma HDL cholesterol concentration.
Resumo:
Physiological and biochemical aspects of assai palm during seed germination and early seedling growth were investigated. Seeds collected from plants growing in flooded and upland forests were used to determine the influence of normoxic (aerobic) and anoxic (anaerobic) conditions in germination and the initial and average time of development in the roots and shoots. After 75 days, seedlings germinated under normoxia were transferred to trays and submitted to flooding. Seed reserves (lipids, proteins, soluble sugars and starch) were monitored for quiescent and germinated seeds maintained under normoxic and anoxic conditions, as well as after 5, 10 and 20 days of seedling growth. Alcohol dehydrogenase (ADH) activity was quantified in roots and leaves of seedlings without or with flooding (partial and total). Seeds were not able to germinate under anoxia. Different strategies of storage mobilization of lipids, proteins, soluble sugars and starch were observed in seeds of each environment. ADH activity was induced by anoxia, with the highest level observed in the leaves. This study showed that, under normoxic conditions, the best developmental performance of assai palm seeds, from flooded or upland forest areas, during germination was associated with primary metabolites mobilization and seedling flooding tolerance with increased ADH activity. We conclude that the assai palm is well adapted to the anoxic conditions provoked by flooding.