64 resultados para Mathematical Processes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes a simplified mathematical model to describe the processes occurring in an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater. The reactor, subjected to rising organic loading rates, contained biomass immobilized cubic polyurethane foam matrices, and was operated at 32 degrees C +/- 2 degrees C, using 24-h batch cycles. In the adaptation period, the reactor was fed with synthetic substrate for 46 days and was operated without agitation. Whereas agitation was raised to 500 rpm, the organic loading rate (OLR) rose from 0.3 g chemical oxygen demand (COD) . L(-1) . day(-1) to 1.2 g COD . L(-1) . day(-1). The ASBBR was fed fat-rich wastewater (dairy wastewater), in an operation period lasting for 116 days, during which four operational conditions (OCs) were tested: 1.1 +/- 0.2 g COD . L(-1) . day(-1) (OC1), 4.5 +/- 0.4 g COD . L(-1) . day(-1) (OC2), 8.0 +/- 0.8 g COD . L(-1) . day(-1) (OC3), and 12.1 +/- 2.4 g COD . L(-1) . day(-1) (OC4). The bicarbonate alkalinity (BA)/COD supplementation ratio was 1:1 at OC1, 1:2 at OC2, and 1:3 at OC3 and OC4. Total COD removal efficiencies were higher than 90%, with a constant production of bicarbonate alkalinity, in all OCs tested. After the process reached stability, temporal profiles of substrate consumption were obtained. Based on these experimental data a simplified first-order model was fit, making possible the inference of kinetic parameters. A simplified mathematical model correlating soluble COD with volatile fatty acids (VFA) was also proposed, and through it the consumption rates of intermediate products as propionic and acetic acid were inferred. Results showed that the microbial consortium worked properly and high efficiencies were obtained, even with high initial substrate concentrations, which led to the accumulation of intermediate metabolites and caused low specific consumption rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the one-dimensional asymmetric simple exclusion process (ASEP) in which particles jump to the right at rate p is an element of (1/2, 1.] and to the left at rate 1 - p, interacting by exclusion. In the initial state there is a finite region such that to the left of this region all sites are occupied and to the right of it all sites are empty. Under this initial state, the hydrodynamical limit of the process converges to the rarefaction fan of the associated Burgers equation. In particular suppose that the initial state has first-class particles to the left of the origin, second-class particles at sites 0 and I, and holes to the right of site I. We show that the probability that the two second-class particles eventually collide is (1 + p)/(3p), where a collision occurs when one of the particles attempts to jump over the other. This also corresponds to the probability that two ASEP processes. started from appropriate initial states and coupled using the so-called ""basic coupling,"" eventually reach the same state. We give various other results about the behaviour of second-class particles in the ASEP. In the totally asymmetric case (p = 1) we explain a further representation in terms of a multi-type particle system, and also use the collision result to derive the probability of coexistence of both clusters in a two-type version of the corner growth model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider a discrete locally finite subset Gamma of R(d) and the cornplete graph (Gamma, E), with vertices Gamma and edges E. We consider Gibbs measures on the set of sub-graphs with vertices Gamma and edges E` subset of E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when Gamma is sampled from a homogeneous Poisson process; and (b) for a fixed Gamma with sufficiently sparse points. (c) 2010 American Institute of Physics. [doi:10.1063/1.3514605]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pilot-scale (1.2 m(3)) anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal for biomass attachment was fed with sulfate-rich wastewater at increasing sulfate concentrations. Ethanol was used as the main organic source. Tested COD/sulfate ratios were of 1.8 and 1.5 for sulfate loading rates of 0.65-1.90 kgSO(4)(2-)/cycle (48 h-cycle) or of 1.0 in the trial with 3.0 gSO(4)(2-) l(-1). Sulfate removal efficiencies observed in all trials were as high as 99%. Molecular inventories indicated a shift on the microbial composition and a decrease on species diversity with the increase of sulfate concentration. Beta-proteobacteria species affiliated with Aminomonas spp. and Thermanaerovibrio spp. predominated at 1.0 gSO(4)(2-) l(-1). At higher sulfate concentrations the predominant bacterial group was Delta-proteobacteria mainly Desulfovibrio spp. and Desulfomicrobium spp. at 2.0 gSO(4)(2-) l(-1), whereas Desulfurella spp. and Coprothermobacter spp. predominated at 3.0 gSO(4)(2-) l(-1). These organisms have been commonly associated with sulfate reduction producing acetate, sulfide and sulfur. Methanogenic archaea(Methanosaeta spp.)was found at 1.0 and 2.0 gSO(4)(2-) l(-1). Additionally, a simplified mathematical model was used to infer on metabolic pathways of the biomass involved in sulfate reduction. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We define a new type of self-similarity for one-parameter families of stochastic processes, which applies to certain important families of processes that are not self-similar in the conventional sense. This includes Hougaard Levy processes such as the Poisson processes, Brownian motions with drift and the inverse Gaussian processes, and some new fractional Hougaard motions defined as moving averages of Hougaard Levy process. Such families have many properties in common with ordinary self-similar processes, including the form of their covariance functions, and the fact that they appear as limits in a Lamperti-type limit theorem for families of stochastic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we extend the results presented in (de Ponte, Mizrahi and Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects of reservoirs at finite temperature in a bosonic dissipative network: a chain of coupled harmonic oscillators whatever its topology, i.e., whichever the way the oscillators are coupled together, the strength of their couplings and their natural frequencies. Starting with the case where distinct reservoirs are considered, each one coupled to a corresponding oscillator, we also analyze the case where a common reservoir is assigned to the whole network. Master equations are derived for both situations and both regimes of weak and strong coupling strengths between the network oscillators. Solutions of these master equations are presented through the normal ordered characteristic function. These solutions are shown to be significantly involved when temperature effects are considered, making difficult the analysis of collective decoherence and dispersion in dissipative bosonic networks. To circumvent these difficulties, we turn to the Wigner distribution function which enables us to present a technique to estimate the decoherence time of network states. Our technique proceeds by computing separately the effects of dispersion and the attenuation of the interference terms of the Wigner function. A detailed analysis of the dispersion mechanism is also presented through the evolution of the Wigner function. The interesting collective dispersion effects are discussed and applied to the analysis of decoherence of a class of network states. Finally, the entropy and the entanglement of a pure bipartite system are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce jump processes in R(k), called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in Rk. We also discuss a simple signaling pathway related to cancer research, called p53 module.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pantanal of Nhecolândia, the world's largest and most diversified field of tropical lakes, comprises approximately 10,000 lakes, which cover an area of 24,000 km² and vary greatly in salinity, pH, alkalinity, colour, physiography and biological activity. The hyposaline lakes have variable pHs, low alkalinity, macrophytes and low phytoplankton densities. The saline lakes have pHs above 9 or 10, high alkalinity, a high density of phytoplankton and sand beaches. The cause of the diversity of these lakes has been an open question, which we have addressed in our research. Here we propose a hybrid process, both geochemical and biological, as the main cause, including (1) a climate with an important water deficit and poverty in Ca2+ in both superficial and phreatic waters; and (2) an elevation of pH during cyanobacteria blooms. These two aspects destabilise the general tendency of Earth's surface waters towards a neutral pH. This imbalance results in an increase in the pH and dissolution of previously precipitated amorphous silica and quartzose sand. During extreme droughts, amorphous silica precipitates in the inter-granular spaces of the lake bottom sediment, increasing the isolation of the lake from the phreatic level. This paper discusses this biogeochemical problem in the light of physicochemical, chemical, altimetric and phytoplankton data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years, a great interest in nonequilibrium systems has been witnessed. Although the Master Equations are one of the most common methods used to describe these systems, the literature about these equations is not straightforward due to the mathematical framework used in their derivations. The goals of this work are to present the physical concepts behind the Master Equations development and to discuss their basic proprieties via a matrix approach. It is also shown how the Master Equations can be used to model typical nonequilibrium processes like multi-wells chemical reactions and radiation absorption processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this paper is to establish some equivalence results on stability, recurrence, and ergodicity between a piecewise deterministic Markov process ( PDMP) {X( t)} and an embedded discrete-time Markov chain {Theta(n)} generated by a Markov kernel G that can be explicitly characterized in terms of the three local characteristics of the PDMP, leading to tractable criterion results. First we establish some important results characterizing {Theta(n)} as a sampling of the PDMP {X( t)} and deriving a connection between the probability of the first return time to a set for the discrete-time Markov chains generated by G and the resolvent kernel R of the PDMP. From these results we obtain equivalence results regarding irreducibility, existence of sigma-finite invariant measures, and ( positive) recurrence and ( positive) Harris recurrence between {X( t)} and {Theta(n)}, generalizing the results of [ F. Dufour and O. L. V. Costa, SIAM J. Control Optim., 37 ( 1999), pp. 1483-1502] in several directions. Sufficient conditions in terms of a modified Foster-Lyapunov criterion are also presented to ensure positive Harris recurrence and ergodicity of the PDMP. We illustrate the use of these conditions by showing the ergodicity of a capacity expansion model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.