6 resultados para Maternal Protein Restriction

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (C) 2009 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low birth weight has been associated with increased obesity in adulthood. It has been shown that dietary salt restriction during intrauterine life induces low birth weight and insulin resistance in adult Wistar rats. The present study had a two-fold objective: to evaluate the effects that low salt intake during pregnancy and lactation has on the amount and distribution of adipose tissue; and to determine whether the phenotypic changes in fat mass in this model are associated with alterations in the activity of the renin-angiotensin system. Maternal salt restriction was found to reduce birth weight in male and female offspring. In adulthood, the female offspring of dams fed the low-salt diet presented higher adiposity indices than those seen in the offspring of dams fed a normal-salt diet. This was attributed to the fact that adipose tissue mass (retroperitoneal but not gonadal, mesenteric or inguinal) was greater in those rats than in the offspring of dams fed a normal diet. The adult offspring of dams fed the low-salt diet, compared to those dams fed a normal-salt diet, presented the following: plasma leptin levels higher in males and lower in females; plasma renin activity higher in males but not in females; and no differences in body weight, mean arterial blood pressure or serum angiotensin-converting enzyme activity. Therefore, low salt intake during pregnancy might lead to the programming of obesity in adult female offspring. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: The premise that intrauterine malnutrition plays an important role in the development of cardiovascular and renal diseases implies that these disorders can be programmed during fetal life. Here, we analyzed the hypothesis that supplementation with mixed antioxidant vitamins and essential mineral in early life could prevent later elevation of blood pressure and vascular and renal dysfunction associated with intrauterine malnutrition. Main methods: For this, female Wistar rats were randomly divided into three groups on day 1 of pregnancy: control fed standard chow ad libitum; restricted group fed 50% of the ad libitum intake and a restricted plus micronutrient cocktail group treated daily with a combination of micronutrient (selenium, folate, vitamin C and vitamin E) by oral gavage. Key findings: In adult offspring, renal function and glomerular number were impaired by intrauterine malnutrition. and the prenatal micronutrient treatment did not prevent it. However, increased blood pressure and reduced endothelium-dependent vasodilation were prevented by the micronutrient prenatal treatment. Intrauterine malnutrition also led to reduced NO production associated with increased superoxide generation, and these parameters were fully normalized by this prenatal treatment. Significance: Our current findings indicate that programming alterations during fetal life can be prevented by interventions during the prenatal period, and that disturbance in availability of both antioxidant vitamins and mineral may play a crucial role in determining the occurrence of long-term cardiovascular injury. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A protocol of physical exercise, based on maximal oxygen uptake ((V) over dot(O2max)), for female rats before and during pregnancy was developed to evaluate the impact of a low-protein diet on oxygen consumption during gestation and growth rate of the offspring. Virgin female Wistar rats were divided into four groups as follows: untrained (NT, n = 5); trained (T, n = 5); untrained with low-protein diet (NT+LP, n = 5); and trained with low-protein diet (T+LP, n = 5). Trained rats were submitted to a protocol of moderate physical training on a treadmill over a period of 4 weeks (5 days week(-1) and 60 min day(-1), at 65% of (V) over dot(O2max)). At confirmation of pregnancy, the intensity and duration of the exercise was reduced. Low-protein groups received an 8% casein diet, and their peers received a 17% casein diet. The birthweight and growth rate of the pups up to the 90th day were recorded. Oxygen consumption ((V) over dot(O2)), CO(2) production and respiratory exchange ratio (RER) were determined using an indirect open-circuit calorimeter. Exercise training increased. (V) over dot(O2max) by about 20% when compared with the initial values (45.6 +/- 1.0 ml kg(-1) min(-1)). During gestation, all groups showed a progressive reduction in the resting (V) over dot(O2) values. Dams in the NT+LP group showed lower values of resting (V) over dot(O2) than those in the NT group. The growth rate of pups from low-protein-fed mothers was around 50% lower than that of their respective controls. The T group showed an increase in body weight from the 60th day onwards, while the NT+LP group presented a reduced body weight from weaning onwards. In conclusion, physical training attenuated the impact of the low- protein

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An important role in protein-energy metabolism has been attributed to leucine because of its long-term effects on body fat reduction and on the improvement of some indicators of protein status in rodents. The present study investigated the influence of leucine supplementation on the body composition and protein status of rats during the early phase of weight loss, which is characterized by a rapid loss of body weight. Thirty adult male Wistar rats were divided into 2 groups, a control and a leucine group (diet supplemented with 0.59% L-leucine), and were submitted to 1 week of 50% food restriction. The following parameters were evaluated: chemical carcass composition, protein and RNA content in liver and gastrocnemius muscle, and serum concentrations of insulin-like growth factor-1 and corticosterone. A higher liver weight and liver protein content were observed in the supplemented group (p < 0.05). However, no difference in body fat was found between groups (p > 0.05). The results indicate that low-dose leucine supplementation favors liver protein status but does not reduce body fat in rats during the early phase of rapid weight loss.