67 resultados para Mala fe
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The heterometal alkoxide [FeCl{Ti2(OPr i)9}] (1) was employed as a single source precursor for the preparation of Fe/Ti oxides under inert atmosphere. Three different synthetic procedures were adopted in the processing of 1, either employing aqueous HNO3 or HCl solutions, or in the absence of mineral acids. Products were characterised by powder X-ray diffractometry, scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDS) and Raman, electron paramagnetic resonance (EPR) and Mössbauer spectroscopies. Oxide products contained titanium(IV) and either iron(III) or iron(II), depending on reaction conditions and thermal treatment temperatures. An interesting iron(III)→iron(II) reduction was observed at 1000 ºC in the HNO3-containing system, leading to the detection of ilmenite (FeTiO3). SEM/EDS studies revealed a highly heterogeneous metal distribution in all products, possibly related to the presence of a significant content of carbon and of structural defects (oxygen vacancies) in the solids.
Resumo:
Soil organic matter (SOM) plays an important role in physical, chemical and biological properties of soil. Therefore, the amount of SOM is important for soil management for sustainable agriculture. The objective of this work was to evaluate the amount of SOM in oxisols by different methods and compare them, using principal component analysis, regarding their limitations. The methods used in this work were Walkley-Black, elemental analysis, total organic carbon (TOC) and thermogravimetry. According to our results, TOC and elemental analysis were the most satisfactory methods for carbon quantification, due to their better accuracy and reproducibility.
Resumo:
This study investigates the use of wild animal hair of C. brachyurus, C. thous and L. pardalis as biomonitors of trace metal at Parque Nacional das Emas, Brazil. Results reveal a strong correlation between Cd and Pb as well as Cu and Zn, which suggests a single source of emission. Most metals showed a lower or equal concentration than those obtained in previous studies. The research shows that monitoring may be performed only with Zn, Pb, Cd, and Cr because of statistical similarity and of a non-natural occurrence of large amounts of the material under analysis.
Resumo:
First-principles scalar relativistic calculations in supercells of 16 atoms are used to represent disordered B2 ordering of Fe(3)Ga in order to observe the effect of Ga-Ga pairs on the electronic structure of this alloy. From a comparison with pure bcc Fe it is observed that the energy position and occupation of e(g) and t(2g) states are largely affected by the Ga-Ga pairs and strengthened intraplane interactions takes place. The results show that a larger hybridization of the conduction band is in the source of the magnetostriction enhancement experimentally observed in Galfenol. (C) 2011 American Institute of Physics. [doi:10.1063/1.3525609]
Resumo:
The evolution of internal stresses in oxide scales growing on polycrystalline Fe(3)Al alloy in atmospheric air at 700 degrees C was determined using in situ energy-dispersive synchrotron X-ray diffraction. Ex situ texture analyses were performed after 5 h of oxidation at 700 degrees C. Under these conditions, the oxide-scale thickness, as determined by X-ray photoelectron spectroscopy, lies between 80 and 100 nm. The main phase present in the oxide scales is alpha-Al(2)O(3), with minor quantities of metastable theta-Al(2)O(3) detected in the first minutes of oxidation, as well as alpha-Fe(2)O(3). alpha-Al(2)O(3) grows with a weak (0001) fiber texture in the normal direction. During the initial stages of oxidation the scale develops, increasing levels of compressive stresses which later evolve to a steady state condition situated around -300 MPa. (C) 2010 International Centre for Diffraction Data. [DOI: 10.1154/1.3402764]
Resumo:
We report on oxygen abundances determined from medium-resolution near-infrared spectroscopy for a sample of 57 carbon-enhanced metal-poor (CEMP) stars selected from the Hamburg/ESO Survey. The majority of our program stars exhibit oxygen-to-iron ratios in the range +0.5 < [O/Fe]< + 2.0. The [O/Fe] values for this sample are statistically compared to available high-resolution estimates for known CEMP stars as well as to high-resolution estimates for a set of carbon-normal metal-poor stars. Carbon, nitrogen, and oxygen abundance patterns for a sub-sample of these stars are compared to yield predictions for very metal-poor asymptotic giant branch (AGB) abundances in the recent literature. We find that the majority of our sample exhibit patterns that are consistent with previously studied CEMP stars having s-process-element enhancements and thus have very likely been polluted by carbon- and oxygen-enhanced material transferred from a metal-poor AGB companion.
Resumo:
We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] less than or similar to -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of similar to 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low- metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.
Resumo:
We present a new set of oscillator strengths for 142 Fe II lines in the wavelength range 4000-8000 angstrom. Our gf-values are both accurate and precise, because each multiplet was globally normalized using laboratory data ( accuracy), while the relative gf-values of individual lines within a given multiplet were obtained from theoretical calculations ( precision). Our line list was tested with the Sun and high-resolution (R approximate to 10(5)), high-S/N (approximate to 700-900) Keck+HIRES spectra of the metal-poor stars HD 148816 and HD 140283, for which line-to-line scatter (sigma) in the iron abundances from Fe II lines as low as 0.03, 0.04, and 0.05 dex are found, respectively. For these three stars the standard error in the mean iron abundance from Fe II lines is negligible (sigma(mean) <= 0.01 dex). The mean solar iron abundance obtained using our gf-values and different model atmospheres is A(Fe) = 7.45(sigma = 0.02).
Resumo:
Magnetic nanoparticles (NP) of magnetite (Fe(3)O(4)) coated with oleic acid (OA) and dodecanoic acid (DA) were synthesized and investigated through transmission electron microscopy (TEM), magnetization M, and ac magnetic susceptibility measurements. The OA coated samples were produced with different magnetic concentrations (78%, 76%, and 65%) and the DA sample with 63% of Fe(3)O(4). Images from TEM indicate that the NP have a nearly spherical geometry and mean diameter similar to 5.5 nm. Magnetization measurements, performed in zero-field cooled (ZFC) and field cooled processes under different external magnetic fields H, exhibited a maximum at a given temperature T(B) in the ZFC curves, which depends on the NP coating (OA or DA), magnetite concentration, and H. The temperature T(B) decreases monotonically with increasing H and, for a given H, the increase in the magnetite concentration results in an increase in T(B). The observed behavior is related to the dipolar interaction between NP, which seems to be an important mechanism in all samples studied. This is supported by the results of the ac magnetic susceptibility chi(ac) measurements, where the temperature in which chi' peaks for different frequencies follows the Vogel-Fulcher model, a feature commonly found in systems with dipolar interactions. Curves of H versus T(B)/T(B) (H=0) for samples with different coatings and magnetite concentrations collapse into a universal curve, indicating that the qualitative magnetic behavior of the samples may be described by the NP themselves, instead of the coating or the strength of the dipolar interaction. Below T(B), M versus H curves show a coercive field (H(C)) that increases monotonically with decreasing temperature. The saturation magnetization (M(S)) follows the Bloch's law and values of M(S) at room temperature as high as 78 emu/g were estimated, a result corresponding to similar to 80% of the bulk value. The overlap of M/M(S) versus H/T curves for a given sample and the low H(C) at high temperatures suggest superparamagnetic behavior in all samples studied. The overlap of M/M(S) versus H curves at constant temperature for different samples indicates that the NP magnetization behavior is preserved, independently of the coating and magnetite concentration. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3311611]
Resumo:
We have performed a systematic study of the magnetic properties of a series of ferrimagnetic nanoparticles of Mg(x)Fe(3-x)O(4) (0.8 <= x <= 1.5) prepared by the combustion reaction method. The magnetization data can be well fitted by Bloch's law with T(3/2). Bloch's constant B determined from the fitting procedure was found to increase with Mg content x from similar to 3.09 X 10(-5) K(-3/2) for x = 0.8 to 6.27 X 10(-5) K(-3/2) for x=1.5. The exchange integral J(AB) and the spin-wave stiffness constant D of Mg(x)Fe(3-x)O(4) nanoparticles were also determined as similar to 0.842 and 0.574 meV and 296 and 202 meV angstrom(2) for specimens with x=0.8 and 1.5, respectively. These results are discussed in terms of cation redistribution among A and B sites on these nanostructured spinel ferrites. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359709]
Resumo:
High wave-vector spin waves in ultrathin Fe/W(110) films up to 20 monolayers (MLs) thick have been studied using spin-polarized electron energy-loss spectroscopy. An unusual nonmonotonous dependence of the spin wave energies on the film thickness is observed, featuring a pronounced maximum at 2 ML coverage. First-principles theoretical study reveals the origin of this behavior to be in the localization of the spin waves at the surface of the film, as well as in the properties of the interlayer exchange coupling influenced by the hybridization of the electron states of the film and substrate and by the strain.
Resumo:
We present an extensive study of the structural, magnetic, and thermodynamic properties of the oxyborate Co(3)O(2)BO(3). This is carried out through x-ray diffraction, static and dynamic magnetic susceptibilities, and specific heat experiments in single crystals in a large temperature range. The structure of Co(3)O(2)BO(3) is composed of subunits in the form of three-leg ladders where Co ions with mixed valency are located. The magnetic properties of this Co ludwigite are determined by a competition between superexchange and double-exchange interactions in the low-dimensional subunits. We discuss the observed physical properties in comparison with the only other known homometallic ludwigite, Fe(3)O(2)BO(3). The latter presents a structural distortion in the ladders and two magnetic transitions. Both features are not found in the present study of the Co ludwigite. The reason for these differences in the structural and magnetic behavior of two apparently similar compounds is discussed.
Resumo:
The successful measurements of a sublattice magnetism with (51)V NMR techniques in the sigma-phase Fe(100-x)V(x) alloys with x=34.4, 39.9, and 47.9 are reported. Vanadium atoms, which were revealed to be present on all five crystallographic sites, are found to be under the action of the hyperfine magnetic fields produced by the neighboring Fe atoms, which allow the observation of (51)V NMR signals. Their nuclear magnetic properties are characteristic of a given site, which strongly depend on the composition. Site A exhibits the strongest magnetism while site D is the weakest. The estimated average magnetic moment per V atom decreases from 0.36 mu(B) for x=34.4 to 0.20 mu(B) for x=47.9. The magnetism revealed at V atoms is linearly correlated with the magnetic moment of Fe atoms, which implies that the former is induced by the latter.
Resumo:
In this work a simple and reliable method for the simultaneous determination of Cr, Fe, Ni and V in crude oil, using emulsion sampling graphite furnace atomic absorption spectrometry is proposed. Under the best conditions, sample masses around 50 mg were weighed in polypropylene tubes and emulsified in a mixture of 0.5% (v v(-1)) hexane + 6% (m v(-1)) Triton X-100 (R). Considering the compromised conditions, the pyrolysis an atomization temperatures for the simultaneous determination of Cr, Fe, Ni and V were 1400 degrees C and 2500 degrees C, respectively. Aliquots of 20 mu L of reference solution and sample emulsion were co-injected into the graphite tube with 10 mu L of 1.0 g L(-1) Mg(NO(3))(2) as chemical modifier. The detection limits (n = 10, 3 sigma) and characteristic masses were, respectively: 0.07 mu g g(-1) and 19 pg for Cr; 2.15 mu g g(-1) and 31 pg for Fe; 1.25 mu g g(-1) and 44 pg for Ni; and 1.15 mu g g(-1) and 149 pg for V. The reliability of the proposed method was checked by fuel oil Standard Reference Material (SRMTriton X-100 (R) 1634c - NIST) analysis. The concentrations found presented no statistical differences compared to the certified values at 95% confidence level.
Resumo:
A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 mu L) was dried on a 6.35 mu m thickness Mylar film at 60 degrees C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from (19)K to (92)U simultaneously.