20 resultados para Magnetic characterization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the formation of ferrihydrite nanoparticles (NPs) by hydrolysis of the Fe(III) alkoxide Fe(O(t)Bu)(3). Controlled amounts of water, up to 3.0 vol%, were added to the precursor solution yielding a series of hydrolyzed samples ranging from P0.0 (the unreacted precursor) to P3.0. X-ray diffraction (XRD) analysis evidenced the formation of high-crystalline ferrihydrite NP in sample P3.0, with grain size estimate of about 3.2 nm. The transition from the molecular precursor to the formation of crystalline magnetic NPs was followed through magnetization measurements M(T) and M(H), as well as Mossbauer spectroscopy (MS). M(T) measurements indicate a paramagnetic (PM) behavior for sample P0.0, characteristic of binuclear Fe-O-Fe units, which evolves to a superparamagnetic (SPM) behavior, with an energy barrier for the blocking process estimated for sample P3.0 as E(a) = 4.9 x 10(-21) J (E(a)/k(B) = 355 K), resulting in a high effective anisotropy constant K(eff) = 290 kJ/m(3). Magnetization loops at 5 K progressively change from PM-like to ferromagnetic-like shape upon increasing the hydrolysis process, although hysteresis (H(c) approximate to 500 Oe) only is apparent for P2.0 and higher. MS spectra at room temperature are PM/SPM doublets for all samples, while the MS spectra at T = 4.2 K reveal increasingly well-defined magnetic ordering as hydrolysis of the precursor stepwise progresses until well-crystallized ferrihydrite particles are formed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new quaternary intermetallic borocarbide TmCo(2)B(2)C has been synthesized via rapid-quench of an arc-melted ingot. Elemental and powder-diffraction analyses established its correct stoichiometry and single-phase character. The crystal structure is isomorphous with that of TmNi(2)B(2)C (I4/mmm) and is stable over the studied temperature range. Above 7 K, the paramagnetic state follows modified Curie-Weiss behavior (chi = C/(T - theta) + chi(0)) wherein chi(0) = 0.008(1) emu mol(-1) with the temperature-dependent term reflecting the paramagnetism of the Tm subsystem: mu(eff) = 7.6(2) mu(B) (in agreement with the expected value for a free Tm(3+) ion) and theta = -4.5(3) K. Long-range ferromagnetic order of the Tm sublattice is observed to develop around similar to 1 K. No superconductivity is detected in TmCo(2)B(2)C down to 20 mK, a feature which is consistent with the general trend in the RCo(2)B(2)C series. Finally, the influence of the rapid-quench process on the magnetism (and superconductivity) of TmNi(2)B(2)C will be discussed and compared to that of TmCo(2)B(2)C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we report results on the influence of heavy rare earth ions substitution on microstructure and magnetism of nanocrystalline magnetite. A series of Fe(2.85)RE(0.15)O(4) (RE = Gd, Dy, Ho, Tm and Yb) samples have been prepared by high energy ball milling. Structure/microstructure investigations of two selected samples Fe(2.85)Gd(0.15)O(4) and Fe(2.85)Tm(0.15)O(4), represent an extension of the previously published results on Fe(3)O(4)/gamma-Fe(2)O(3), Fe(2.85)Y(0.15)O(4) and Fe(2.55)In(0.45)O(4) [Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovalekic. Ph. Colomban, Sol. State Sciences 8 (2006) 908], while magnetic characterization has been done for all the samples. Crystallite/particle size and strain determined by X-ray diffractometry and Transmission electron microscopy (TEM) confirmed the nanostructured nature of the mechanosynthesized materials. X-ray powder diffraction was used to analyze anisotropic line broadening effects through the Rietveld method. The size anisotropy was found to be small while strain anisotropy was large, indicating nonuniform distribution of deffects in the presence of Gd and Tm in the crystal structure. Superparamagnetic(SPM) behavior at room temperature was observed for all samples studied. The Y-substituted Fe(3)O(4) had the largest He and the lowest M(S). We discuss the changes in magnetic properties in relation to their magnetic anisotropy and microstructure. High field irreversibility (H>20kOe) in ZFC/FC magnetization versus temperature indicates the existence of high magnetocrystalline and/or strain induced anisotropy. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evidence of successful growth of Mn-doped PbS (Pb(1-x)Mn(x)S) nanocrystals (NCs) in SiO(2)-Na(2)CO(3)-Al(2)O(3)-PbO(2)-B(2)O(3) template, using the fusion method, is reported on in this study. The as-grown Pb(1-x)Mn(x)S NC is characterized using optical absorption, electron paramagnetic resonance, and atomic force microscopy. The data are discussed in terms of two distinct scenarios, namely a core-doped and a shell-doped nanostructure. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CoFe(2)O(4) nanoparticles were obtained by the co-precipitation method. They were further modified by the adsorption of ricinoleic acid (RA). The non-modified and modified CoFe(2)O(4)/RA nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman, and Fourier transform infrared (FTIR) spectroscopy. The modified particles present a mean diameter < 20 nm. The adsorption of RA on the CoFe(2)O(4) surface is characterized by the IR absorptions of the RA while in the Raman spectrum the predominant signals are those from the CoFe(2)O(4). The cis-polyisoprene (PI) composite was prepared by dissolving PI in cyclohexane followed by the addition of a magnetic fluid based on CoFe(2)O(4)/RA nanoparticles dispersed in cyclohexane. After solvent evaporation a magnetic composite was obtained and characterized by AFM, Raman, and FTIR measurements. AFM images show uniformly CoFe(2)O(4)/RA particles distributed in the PI matrix. Raman spectra obtained for the composites reveal the characteristic Raman peaks of PI and CoFe(2)O(4) nanoparticles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to assess the relation between the number of free radicals generated and the polymerization depth in two different commercial brands of resin composites with different colors and translucence. Electron paramagnetic resonance quantified the radical populations through relative intensity (I (r)) of free radicals generated, and radical decay was monitored. Sample translucence and the classical polymerization depth were measured. The analysis indicated that resin with more color pigments (MA4, I (r) = 0.73 a.u) or more opacity components (ODA2, I (r) = 0.84 a.u) generated smaller populations of free radicals and have the lower polymerization depth than clearer (M, I (r) = 1.20 a.u and MA2, I (r) = 1.02) or more translucent (OEA2, I (r) = 1.00 a.u) composites for the same light-curing time. It seems that irradiation doses have to be adequate to more colored and less translucent resins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles of NiMn(2)O(4) were successfully obtained by mixing gelatin and inorganic salts NiCl(2) center dot 6H(2)O and MnCl(2) center dot 4H(2)O in aqueous solution. The mixture has been synthesized at different temperatures and resulted in NiMn(2)O(4) nanoparticles with crystallites size in the range of 14-44 nm, as inferred from X-ray powder diffraction (XRPD) data. We have also observed that both the average crystallite size and the unit cell parameters increase with increasing synthesis temperature. Magnetic measurements confirmed the presence of a magnetic transition near 110K. (C) 2008 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We here report the first magnetically recoverable Rh(0) nanoparticle-supported catalyst with extraordinary recovery and recycling properties. Magnetic separation has been suggested as a very promising technique to improve recovery of metal-based catalysts in liquid-phase batch reactions. The separation method is significantly simple, as it does not require filtration, decantation, centrifugation, or any other separation technique thereby, overcoming traditional time- and solvent-consuming procedures. Our new magnetically separable catalytic system, comprised of Rh nanoparticles immobilized on silica-coated magnetite nanoparticles, is highly active and could be reused for up to 20 times for hydrogenation of cyclohexene (180,000 mol/mol(Rh)) and benzene (11,550 mol/mol(Rh) under mild conditions. (c) 2007 Elsevier B. V. All fights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass microspheres containing radionuclides are used to treat liver cancer. A promising alternative therapy is being developed based on the magnetic hyperthermia which is related to the heat supplied by a magnetic material under an alternating current magnetic field. The advantage of this option is that most of killed cells are cancer cells which are more susceptible to the temperature raise. In the present work aluminum iron silicate glasses containing minor glass modifiers and nucleating agents were synthesized as irregular shape particles which were further transformed in microspheres by using a petrol liquefied gas-oxygen torch. The optimized processing parameters which lead to microspheres that give a response to the magnetic field were determined. The dissolution rate in water at 90 degrees C was determined to be 3 x 10(-8) g cm(-2) min(-1). The microsphere size distribution was determined by laser scattering. The crystalline phase responsible for the ferromagnetic response was identified as magnetite. Since this phase has a high saturation magnetization and high Curie temperature, it is potentially useful for biomedical applications. The hysteresis magnetic loop was measured for materials produced in different conditions, and some of them showed to be appropriated for thermotherapy. The ratio Fe(3+)/Fe(total) was determined by Mossbauer spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-x)(Y(2)O(3))(x)} (0.1 <= x <= 0.25) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as Y-3d core-level X-ray photoelectron spectroscopy, (11)B magic-angle spinning (MAS) NMR spectra reveal that the majority of the boron atoms are three-coordinated, and a slight increase of four-coordinated boron content with increasing x can be noticed. (27)Al MAS NMR spectra show that the alumina species are present in the coordination states four, five and six. All of them are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, nonsegregated glass structure. For the first time, (89)Y solid state NMR has been used to probe the local environment of Y(3+) ions in a glass-forming system. The intrinsic sensitivity problem associated with (89)Y NMR has been overcome by combining the benefits of paramagnetic doping with those of signal accumulation via Carr-Purcell spin echo trains. Both the (89)Y chemical shifts and the Y-3d core level binding energies are found to be rather sensitive to the yttrium bonding state and reveal that the bonding properties of the yttrium atoms in these glasses are similar to those found in the model compounds YBO(3) and YAl(3)(BO(3))(4), Based on charge balance considerations as well as (11)B NMR line shape analyses, the dominant borate species are concluded to be meta- and pyroborate anions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of more efficient anti-tuberculosis drugs is of interest. Three oxovanadium(IV) and three cis-dioxovanadium(V) complexes with thiosemicarbazone derivatives bearing moieties with different lipophilicity have been prepared and had their inhibitory activity against Mycobacterium tuberculosis H(37)Rv ATCC 27294 evaluated. The analytical methods used by the complexes` characterization included IR, EPR, (1)H, (13)C and (51)V NMR spectroscopies, elemental analysis, cyclic voltammetry, magnetic susceptibility measurement and single crystal X-ray diffractometry. [VO(acac)(aptsc)], [VO(acac)(apmtsc)] and [VO(acac)(apptsc)] (acac = acetylacetonate; Haptsc = 2-acetylpyridinethiosemicarbazone; Hapmtsc = 2-acetylpyridine-N(4)-methyl-thiosemicarbazone and Happtsc = 2-acetylpyridine-N(4)-phenyl-thiosemicarbazone) are paramagnetic and their EPR spectra are consistent with the monoanionic N,N,S-tridentate coordination of the thiosemicarbazone ligands, resulting in octahedral structures of rhombic symmetry and with the oxidation state +IV for the vanadium atom. As result of oxidation of the vanadium(IV) complexes above, the diamagnetic cis-dioxovanadium(V) complexes [VO(2)(aptsc)[, [VO(2)(apmtsc)[ and [VO(2)(apptsc)] are formed. Their (1)H, (13)C and (51)V NMR spectra were acquired and support a distorted square pyramidal geometry for them, in accord with the solid state X-ray structures determined for [VO(2)(aptsc)] and [VO(2)(apmtsc)]. In general, the vanadium compounds show comparable or larger anti-M. tuberculosis activities than the free thiosemicarbazone ligands, with MIC values within 62.5-1.56 (mu g/mL). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis, characterization, crystal structure, and biological studies of two complexes with glycolic acid are described. The solid complexes were formulated as K2[VO(C2H2O3)(C2H3O3)2] H2O (1) and K2[{VO2(C2H2O3)}2] (2) and characterized by X-ray studies, Fourier transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and magnetic susceptibility. Conversion of 1 to 2 was studied in aqueous solution by UV-Vis spectroscopy and in the solid state by diffuse reflectance spectroscopy. Complex 2 contains dinuclear [{VO2(C2H2O3)}2]2- anions in which glycolate(2-) is a five-membered chelating ring formed by carboxylate and -hydroxy groups. The geometry around the vanadium in 2 was interpreted as intermediate between a trigonal bipyramid and a square pyramid. Vanadium(IV) is pentacoordinate in 1 as a distorted square pyramid. Complex 1 contains a vanadyl group (V=O) surrounded by two oxygens from deprotonated carboxylate and hydroxy groups forming a five-membered ring. Two oxygens from different glycolates(1-) are bonded to the (V=O) also. Biological analysis for potential cytotoxic effects of 1 was performed using Human Cervix Adenocarcinoma (HeLa) cells, a human cervix adenocarcinoma-derived cell line. After incubation for 48 h, 1 causes 90 and 95% of HeLa cells death at 20 and 200 mol L-1, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).