7 resultados para Machine translating
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.
Resumo:
Species` potential distribution modelling consists of building a representation of the fundamental ecological requirements of a species from biotic and abiotic conditions where the species is known to occur. Such models can be valuable tools to understand the biogeography of species and to support the prediction of its presence/absence considering a particular environment scenario. This paper investigates the use of different supervised machine learning techniques to model the potential distribution of 35 plant species from Latin America. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species. The experimental results highlight the good performance of random trees classifiers, indicating this particular technique as a promising candidate for modelling species` potential distribution. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
To plan testing activities, testers face the challenge of determining a strategy, including a test coverage criterion that offers an acceptable compromise between the available resources and test goals. Known theoretical properties of coverage criteria do not always help and, thus, empirical data are needed. The results of an experimental evaluation of several coverage criteria for finite state machines (FSMs) are presented, namely, state and transition coverage; initialisation fault and transition fault coverage. The first two criteria focus on FSM structure, whereas the other two on potential faults in FSM implementations. The authors elaborate a comparison approach that includes random generation of FSM, construction of an adequate test suite and test minimisation for each criterion to ensure that tests are obtained in a uniform way. The last step uses an improved greedy algorithm.
Resumo:
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.
Resumo:
Establishing metrics to assess machine translation (MT) systems automatically is now crucial owing to the widespread use of MT over the web. In this study we show that such evaluation can be done by modeling text as complex networks. Specifically, we extend our previous work by employing additional metrics of complex networks, whose results were used as input for machine learning methods and allowed MT texts of distinct qualities to be distinguished. Also shown is that the node-to-node mapping between source and target texts (English-Portuguese and Spanish-Portuguese pairs) can be improved by adding further hierarchical levels for the metrics out-degree, in-degree, hierarchical common degree, cluster coefficient, inter-ring degree, intra-ring degree and convergence ratio. The results presented here amount to a proof-of-principle that the possible capturing of a wider context with the hierarchical levels may be combined with machine learning methods to yield an approach for assessing the quality of MT systems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes an improved voice activity detection (VAD) algorithm using wavelet and support vector machine (SVM) for European Telecommunication Standards Institution (ETS1) adaptive multi-rate (AMR) narrow-band (NB) and wide-band (WB) speech codecs. First, based on the wavelet transform, the original IIR filter bank and pitch/tone detector are implemented, respectively, via the wavelet filter bank and the wavelet-based pitch/tone detection algorithm. The wavelet filter bank can divide input speech signal into several frequency bands so that the signal power level at each sub-band can be calculated. In addition, the background noise level can be estimated in each sub-band by using the wavelet de-noising method. The wavelet filter bank is also derived to detect correlated complex signals like music. Then the proposed algorithm can apply SVM to train an optimized non-linear VAD decision rule involving the sub-band power, noise level, pitch period, tone flag, and complex signals warning flag of input speech signals. By the use of the trained SVM, the proposed VAD algorithm can produce more accurate detection results. Various experimental results carried out from the Aurora speech database with different noise conditions show that the proposed algorithm gives considerable VAD performances superior to the AMR-NB VAD Options 1 and 2, and AMR-WB VAD. (C) 2009 Elsevier Ltd. All rights reserved.