4 resultados para MVC
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
OWL-S is an application of OWL, the Web Ontology Language, that describes the semantics of Web Services so that their discovery, selection, invocation and composition can be automated. The research literature reports the use of UML diagrams for the automatic generation of Semantic Web Service descriptions in OWL-S. This paper demonstrates a higher level of automation by generating complete complete Web applications from OWL-S descriptions that have themselves been generated from UML. Previously, we proposed an approach for processing OWL-S descriptions in order to produce MVC-based skeletons for Web applications. The OWL-S ontology undergoes a series of transformations in order to generate a Model-View-Controller application implemented by a combination of Java Beans, JSP, and Servlets code, respectively. In this paper, we show in detail the documents produced at each processing step. We highlight the connections between OWL-S specifications and executable code in the various Java dialects and show the Web interfaces that result from this process.
Electromyographic Evaluation of Neuromuscular Coordination of Subject After Orthodontic Intervention
Resumo:
The aim of this work was to investigate the neuromuscular changes associated with the orthodontic post-treatment using surface electromyography. One hundred (100) young, healthy adults without signs and symptoms of temporomandibular dysfunction (TMD) were divided into two groups: 60 subjects who were undergoing orthodontic intervention (Ortho Group) and 40 subjects who had no orthodontic intervention (Control Group), aged 18-25 years. EMG activity of masseter and temporalis anterior muscle was recorded during two different tests: 1. maximum voluntary clench (MVC) with cotton rolls; and 2. MVC in intercuspal position. In all subjects, both tests were performed with symmetric muscular patterns (more than 85%) and with insignificant latero-deviating of the mandible (lower than 10%). There are no statistically significant differences between the subjects of both groups evaluated. Both groups showed medium index values calculated according to the normal standards established previously.
Resumo:
Background and Objectives: There are some indications that low-level laser therapy (LLLT) may delay the development of skeletal muscle fatigue during high-intensity exercise. There have also been claims that LED cluster probes may be effective for this application however there are differences between LED and laser sources like spot size, spectral width, power output, etc. In this study we wanted to test if light emitting diode therapy (LEDT) can alter muscle performance, fatigue development and biochemical markers for skeletal muscle recovery in an experimental model of biceps humeri muscle contractions. Study Design/Materials and Methods: Ten male professional volleyball players (23.6 [SD +/- 5.6] years old) entered a randomized double-blinded placebo-controlled crossover trial. Active cluster LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW, 30 seconds total irradiation time, 41.7J of total energy irradiated) or an identical placebo LEDT was delivered under double-blinded conditions to the middle of biceps humeri muscle immediately before exercise. All subjects performed voluntary biceps humeri contractions with a workload of 75% of their maximal voluntary contraction force (MVC) until exhaustion. Results: Active LEDT increased the number of biceps humeri contractions by 12.9% (38.60 [SD +/- 9.03] vs. 34.20 [SD +/- 8.68], P = 0.021) and extended the elapsed time to perform contractions by 11.6% (P = 0.036) versus placebo. In addition, post-exercise levels of biochemical markers decreased significantly with active LEDT: Blood Lactate (P = 0.042), Creatine Kinase (P = 0.035), and C-Reative Protein levels (P = 0.030), when compared to placebo LEDT. Conclusion: We conclude that this particular procedure and dose of LEDT immediately before exhaustive biceps humeri contractions, causes a slight delay in the development of skeletal muscle fatigue, decreases post-exercise blood lactate levels and inhibits the release of Creatine Kinase and C-Reative Protein. Lasers Surg. Med. 41:572-577, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
This study aimed to investigate the effect of 830 nm low-level laser therapy (LLLT) on skeletal muscle fatigue. Ten healthy male professional volleyball players entered a crossover randomized double-blinded placebo-controlled trial. Active LLLT (830 nm wavelength, 100 mW output, spot size 0.0028 cm(2), 200 s total irradiation time) or an identical placebo LLLT was delivered to four points on the biceps humeri muscle immediately before exercises. All subjects performed voluntary biceps humeri contractions with a load of 75% of the maximum voluntary contraction (MVC) force until exhaustion. After active LLLT the mean number of repetitions was significantly higher than after placebo irradiation [mean difference 4.5, standard deviation (SD) +/- 6.0, P = 0.042], the blood lactate levels increased after exercises, but there was no significant difference between the treatments. We concluded that 830 nm LLLT can delay the onset of skeletal muscle fatigue in high-intensity exercises, in spite of increased blood lactate levels.